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Abstract

Three LOD score statistics are often used for genome-wide linkage analysis: the maximum LOD
score, the LOD score statistic proposed by Kong and Cox, both based on the allele-sharing
between affected sib pairs, and the maximization of the LOD score function of Morton on two
genetic models and an heterogeneity parameter.

Using only identity-by-descent sharing between affected sibs as linkage information, we studied the
behavior of these three statistics under the null hypothesis in the rheumatoid arthritis simulated
data (Genetic Analysis Workshop 15 Problem 3 — simulating model known). Distributions under
the null hypothesis show that identical values of the statistics correspond to very different genome-
wide p-values: comparison and interpretation of several linkage statistics cannot be done on the
observed value. The Kong and Cox LOD score statistic had slightly better power to detect the
HLA region involved in rheumatoid arthritis compared to the other methods. In a second step, we
show that performing the analysis under a greater number of genetic models in the hope of better
scanning the space of models, does not increase the power of detection.

affected sibs and do not require the specification of a
model at the disease locus which, in the case of a multifac-
torial disease, is unknown.

Background

Genome-wide linkage studies are often performed on
affected sib pairs to detect disease susceptibility genes in
multifactorial diseases. Many statistics have been pro-

posed to achieve such a goal.

Two methods, the LOD score statistic proposed by Kong
and Cox (KC-LOD) [1], which is an extension of the non-
parametric linkage statistic [2], and the maximum LOD
score (MLS) [3], are based on the allele sharing between

An alternative strategy, proposed by Greenberg et al. [4],
maximizes the LOD score function of Morton [5] on two
genetic models at the disease locus and on an additional
heterogeneity parameter. We will call this statistic HLOD-
S1. With the idea of better scanning the space of models
to improve power, many authors (e.g., [6-9]) considered
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a wider set of genetic models, without consensus on
which and how many models should be employed. Here,
we will focus on the maximum statistic obtained over four
different genetic models, which we will call HLOD-S2.

These statistics are all LOD scores, i.e., the decimal loga-
rithm of the ratio of two likelihoods (linkage versus no
linkage). They are computed at each marker of a given
chromosome, taking into account the multipoint infor-
mation provided by the entire set of markers. The maxi-
mum value observed for each chromosome is then
retained to perform the linkage test. However, since these
statistics differ on the parameters on which the maximiza-
tion is achieved, they are likely to have different statistical
properties.

In this work, we study the behavior of these statistics
under the null hypothesis, and then evaluate their per-
formance for detecting the HLA risk factor in the rheuma-
toid arthritis (RA) simulated data (Genetic Analysis
Workshop 15 Problem 3). The simulating model was
known prior to the analysis.

Methods

Material

The segregation of 730 microsatellite markers, spaced on
22 chromosomes with an average inter-marker distance of
about 5 cM, was simulated on 100 replicates of 1500 fam-
ilies with at least two affected sibs.

Preliminary linkage analyses showed that it was not pos-
sible to make any power comparison with such sample
sizes: all linkage statistics were highly significant for
detecting the role of HLA, while their power was very low
(less than 5%) for the other loci. Therefore, we decided to
focus on the detection of the susceptibility factor in the
HLA region and to split each replicate into smaller family
samples in order to have a lower, but not too low, power
of detection. A sample size of 60 seemed appropriate.
Each replicate was split into 25 sub-samples. The study
was thus performed on 2500 replicates of 60 families
each. Parental status was considered unknown in all rep-
licates, so that linkage information consists of the iden-
tity-by-descent (IBD) sharing between affected sibs.

Linkage statistics
The data were analyzed by four LOD score statistics, MLS,
KC-LOD, HLOD-S1, and HLOD-S2.

The MLS [3] maximizes the likelihood of the IBD sharing
vector, within the possible triangle constraints [10].
Under the null hypothesis, the expected IBD vector is
[0.25; 0.50; 0.25]. Calculations were performed with the
Mapmaker/Sibs software [11].

http://www.biomedcentral.com/1753-6561/1/S1/S102

The KC-LOD proposed by Kong and Cox [1] is maximized
on a single parameter, , that represents the degree of
allele sharing among affected individuals. Under the null
hypothesis, § is equal to 0, and the higher §, the higher the
allele sharing. KC-LOD analysis was carried out under the
"score pairs" option and the exponential model proposed
by Kong and Cox with Allegro v1.2 [12].

HLOD-S1 was calculated as initially proposed by Green-
berg et al. [4] under a dominant and recessive model, each
with a disease allele frequency of 0.01, a penetrance of
0.50, and no phenocopies. The LOD score function was
maximized over these two models and the heterogeneity
parameter, o, represented the proportion of families
linked to the disease locus. In HLOD-S2, two additional
models were considered, with a disease allele frequency of
0.2. The LOD score function was then maximized over
these four genetic models and the parameter a.. All HLOD
calculations were done with the Allegro v1.2 software
[12].

We first studied the distribution of these four statistics
under the assumption of no linkage by analyzing the 16
chromosomes that did not harbor a susceptibility gene.
The maximum value on each chromosome was recorded
for each statistic, leading to 40,000 values (2500 replicates
x 16 chromosomes). This provides the distribution of the
maximum of each statistics for an average chromosome.
Thus, for a full genome scan, one may apply a Bonferroni
correction for 22 chromosomes. This procedure can be
used either to determine the threshold for a genome-wide
type I error of 5% (nominal p = 0.002 per chromosome)
or to determine the genome-wide p-value corresponding
to a given value of the statistics.

The power for detecting linkage was calculated as the
number of times a given statistic exceeded the threshold
corresponding to a genome-wide type I error of 5%. Two
loci in the HLA region were known to be involved in the
manifestation of the simulated disease. We considered the
HLA region to be detected if there was evidence for linkage
in the 20-cM interval around the HLA-DR locus, i.e., in the
interval [STRP6_10-STRP6_13].

Results and discussion

Distribution of the statistics under the null hypothesis
Figure 1 shows the false-positive rates corresponding to
the observed values of the KC-LOD, MLS, and HLOD-S1
under the null hypothesis. For clarity, the graph is limited
to values between two and four.

Although the three linkage statistics are maximum LOD
scores, their distributions are different. This is due to the
different underlying parameterization. Note, however,
that MLS and HLOD-S1 have very similar distributions.
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False-positive rate as a function of the observed values of three linkage statistics under no linkage.

The HLOD-S2 statistic, performed under four different
genetic models, has a distribution similar to that of MLS
and HLOD-S1 (data not shown).

Identical values of observed KC-LOD and MLS (or HLOD-
S1) give rise to very different genome-wide p-values. For
example, when a value of two is observed, the false-posi-
tive rate is 31% for KC-LOD, while a value of two attains
a false-positive rate of almost 50% for the MLS and
HLOD-S1 (49.4 and 48.4%, respectively). This shows that
the comparison and interpretation of several linkage sta-
tistics cannot be done on the observed value.

The thresholds corresponding to a genome-wide type I
error of 5% are 2.89, 3.23, and 3.19 for the KC-LOD, MLS,
and HLOD-S1, respectively.

Power for detecting linkage in the HLA region

The power of linkage detection of each statistic was deter-
mined for 2500 replicates of 60 families on chromosome
6, using the thresholds above. The power is 48.5%,

45.9%, and 44.6% for KC-LOD, MLS, and HLOD-SI1,
respectively, showing the slight advantage of the KC-LOD.

In a second step, we compared the impact of four versus
two genetic models in the HLOD analysis. Both statistics
have the same the 5% genome-wide threshold. The power
of the four-model HLOD-S2 is very slightly, but not signif-
icantly, increased (from 44.6 to 45.8%). This increase may
be explained by the very strong correlation (12> 0.97)
between the HLODs obtained for the two dominant mod-
els (¢ =0.2 and g = 0.01) and for the two recessive models,
respectively.

Conclusion

The linkage statistics studied here are all maximum LOD
scores. However, the KC-LOD distribution under the null
hypothesis is very different from that of the MLS and
HLOD-S1. The same observed value can correspond to
very different p-values. We would like to stress, following
Nyholt [13], that the interpretation of linkage results
should not be performed in terms of observed value of the
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statistics, but that appropriate significance threshold
should be empirically calculated on the family structures
under study.

It has been claimed that HLOD-S1 had similar or even
greater power than so-called nonparametric methods,
such as the MLS or the NPL [2]. Here, under the model
simulated to mimic HLA susceptibility in rheumatoid
arthritis, the power of the KC-LOD is slightly higher than
HLOD-S1 and MLS. This result is not general, as it very
likely depends on the underlying model and on the sam-
pled family structures. Here, data consisting of affected sib
pairs and the information on linkage was only provided
by the IBD sharing between affected individuals.

Finally, several authors apply the HLOD statistics, using a
wide variety of genetic models, in the hope of better scan-
ning the space of models, and thus increasing the power
of detection [6-9]. This is not the case here: performing the
analysis under four different genetic models (HLOD-S2)
does not increase the power. This is due to the high corre-
lation observed in the value of the statistics under genetic
models that differ only by the disease allele frequency.
When a LOD score function is maximized over a set of
genetic models (the so-called MOD score function [14]),
overparameterization may happen for some familial
structures [15]. In other words, the same maximum may
be reached for an infinite set of key parameters. In partic-
ular, Clerget-Darpoux et al. [14] showed that, in nuclear
families with two children, the same maximum MOD
score was obtained for an infinite set of disease allele fre-
quencies and recombination fractions. Similarly, many
sets of disease allele frequency and heterogeneity values
can explain the IBD sharing of an affected sib-pair sample.
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