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Abstract
Our aim is to develop methods for identifying a (causal) variant or variants from a dense panel of
single-nucleotide polymorphisms (SNPs) that are genotyped on the evidence of previous studies.
Because a large number of SNPs are in close proximity to each other, the magnitude of linkage
disequilibrium (LD) plays an important role. Namely, highly correlated SNPs may hamper standard
methods such as multivariate logistic regression due to multicolinearity between the covariates.
Sequences of models with high dimension naturally raise questions about model selection
strategies. We investigate three variable selection methods based on logistic regression. The
penalties on stepwise selection were imposed using the Akaike's Information Criterion (AIC), and
using the lasso penalty. Finally, a Bayesian variable-selection logistic regression model was
implemented. The methods are illustrated using the simulated dense SNPs including the causal DR/
C locus on chromosome 6. We also evaluate model selection in terms of average prediction error
across nine replicates. We conclude that for the Genetic Analysis Workshop 15 (GAW15) data,
the newly developed Bayesian selection method performs well.
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Background
When a large number of potentially causative sites have
been determined, the next question is how to distinguish
the sites that have a causal role from the ones that show
disease association because of linkage disequilibrium
(LD). Stepwise logistic regression has been suggested to
identify the relative importance of variants at different
sites [1]. In order to deal with high correlation between
the single-nucleotide polymorphisms (SNPs), the lasso
penalty was applied for model selection, which shrinks
some coefficients to zero for sufficiently large penalty [2].
Subsequently, we contrast results with an explicit variable
selection implemented within fully Bayesian framework.

Methods
Model selection using penalties

Let yi, i = 1,..., m, be the binary response variable and let

xij, j = 1,..., p, be the predictor variables. Further define the

monotone logit transformation ηi = pi/(1 - pi), where pi is

the probability of observing yi = 1. For the logistic regres-

sion model , where β0 denotes the

offset, the binomial log-likelihood l is

Here β = {β0, βj} and the vector xi includes the constant
term 1.

In case of a large number of predictors, it is often desirable
to determine a smaller subset with the strongest effects.
Our first strategy is to consider stepwise selection with
Akaike's Information Criterion (AIC) [2], as defined by
AIC = -2l(β) + 2k. Here, k is the number of parameters
included in the model, and AIC penalizes for the addition
of parameters.

As an alternative we impose the so-called lasso penalty [2-
4]. The above log-likelihood [Eq. (1.1)] can be modified
as follows:

where s = 1 and ||β||1 = ∑j|βj|, the L1 norm of the parame-
ter vector β. This lasso-type penalization can be useful for
variable selection, because it shrinks some coefficients to
zero. Note that only the βj values are subject to penaliza-
tion, not the offset β0. An optimal λ can be determined by
AIC and 10-fold cross-validation (CV).

From a Bayesian point of view, Eq. (1.2) can be seen as the
posterior mode for combining a flat prior β0, and inde-
pendently normally distributed βj values. Therefore, lasso
parameter λ1 can be seen as the inverse of the variance of

the prior. From this perspective, it becomes clear why
Markov Chain Monte Carlo (MCMC) techniques can be
applied for better handling of model uncertainty.

Bayesian model selection

We implemented a fully Bayesian approach to variable
selection for the logistic regression model, with hierarchi-
cal specification on the regression parameter vector and
logit link on the class probabilities. A flat prior was

assumed for the intercept term β0, and the βj values were

independently modeled as -distributed ran-

dom variables, where ν is a known scale and 1/ζ a rescal-

ing factor, such that ζ has a Gamma(a, b) distribution
with a and b positive real numbers. We assumed a uni-
form prior on SNP location choices (i.e., from a variable
selection point of view, all SNPs have equal prior proba-
bility). An auxiliary variable approach was implemented
to generate the logistic model via mixture modeling
within an ordinary normal regression model [5,6]. A
hybrid MCMC sampler was applied, based on random
choices between three steps to add (birth), remove
(death), or move a SNP to the model. For more details we
refer to Mertens [7], Green [8], and Holmes and Held [6].
We performed a simulation of 100,000 iterations and dis-
carded the first 50,000 as burn-in. The classification per-
formance from the model was investigated based on the
marginal mean posterior class probabilities. Sensitivities
and specificities were presented along with the receiver
operating characteristic (ROC) curve. The Bayesian logis-
tic regression variable selection model was implemented
in MATLAB.

Evaluation of the model selection regarding prediction 
performance
Because it is difficult to defend a model that predicts
poorly, we also examined prediction performance. The
first simulated data set, Replicate 1, was used as a training
set to determine the optimal set of variables, and Repli-
cates 2 to 10 were used for validation by calculating aver-
age prediction error. This was defined to be the average of
the classification errors from the predicted values using
selected SNPs for each of nine data sets. The computations
were performed with the programming language R modi-
fying various existing packages.

Materials
We used ten replicates of simulated data, a dense map of
17,820 SNPs on chromosome 6, modeled after the rheu-
matoid arthritis (RA) data. We selected a high LD region
of approximately 5 Mb including the trait loci (DR/C
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locus) with a large trait effect; we knew the "answers". Set-
ting a threshold of p-value < 0.001 using the Cochran-
Armitage trend test, we obtained 73 SNPs. Further, we
chose 200 cases and 200 controls by the RA status.

Results
Whereas the disease SNP 3437 was selected by all meth-
ods (Table 1), the Bayesian logistic variable selection
regression model was the most parsimonious one, as it
identified only two SNPs. In Figure 1, the number of times
that each particular SNP was selected into the model
across all models simulated was expressed as a percentage
of the total number of models considered. The two SNPs
were selected from nearly 98% of all models. To summa-
rize classification performance from all models visited, we
calculated the mean posterior class probability, and found
sensitivity and specificity of 0.82, with the global mis-
specification error of 0.13. Figure 2 shows the ROC curve
for the marginal mean posterior class probability and the
area under the curve (AUC) equals to 0.933.

Even though validation set size (nine replicates) was very
small, we investigated prediction performance to evaluate
the models (Table 2). Based on the average prediction
error over nine replicates, the Bayesian selection seemed
to outperform other methods.

Discussion
When we dropped the causal SNP and analyzed data
again, by stepwise selection with the AIC and by the lasso
penalty method, the same remaining SNPs were selected.
The corresponding average prediction error still remained

at the same level. Meanwhile, the Bayesian method
selected two SNPs, 3436 (with probability 87%) and 3439
(with probability 97%), between which the causal SNP
3437 was located. Because the penalty methods selected
several (possibly correlated) SNPs, we applied ridge pen-
alty [9] and random forests [10] to stabilize the system.
We found that prediction performance generally
improved slightly with ridge penalty regularization (Table
2). We also compared the above findings with situations
in which only the causal SNP was included in the model.
In all situations, prediction performance based on nine
replicates remained almost at the same level for each
selection method.

Additionally, we analyzed another candidate region of 5
Mb around the D locus with a small effect and moderate
LD, where the causal SNP was not included. Using these
data sets, which can be considered as the opposite of those
used in the main analyses, none of the methods per-
formed well in terms of prediction performance.

Our Bayesian method can (theoretically) deal with a great
number of SNPs, provided that time and facilities are
available. The computational efficiency is mainly
achieved by integrating out regression coefficients within
the ratio of marginal likelihoods. However, the usefulness
for genome-wide scan remains to be evaluated.

Classification performance of all models simulatedFigure 2
Classification performance of all models simulated. 
ROC curve for the marginal mean posterior class probability.

Relative importance of the SNPs across all models simulatedFigure 1
Relative importance of the SNPs across all models 
simulated. Two SNPs including the causal SNP 3437 were 
selected nearly 98% of all models.
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Conclusion
All methods identified the causal SNP together with other
variants. In terms of parsimony of the model and predic-
tion performance, Bayesian method outperformed other
methods. When high correlations between the SNPs are
characteristics in some candidate region such as in the
specific data presented in this paper, and the focus of
investigation is to find a causal gene, we conclude that a
Bayesian method might perform well to disentangle the
structure. Figures 1 and 2 summarize our evaluation
results succinctly. The plot of mean posterior class proba-
bility indicates relative importance of the selected SNPs:
i.e., in average how many times these SNPs were included
across all the models simulated. Additionally, the ROC
curve indicates how well these models were classified.

Competing interests
The author(s) declare that they have no competing inter-
ests.

Acknowledgements
H.W. Uh was funded by the GENOMEUTWIN project which is supported 
by the European Union Contract No. QLG2-CT-2002-01254.

This article has been published as part of BMC Proceedings Volume 1 Sup-
plement 1, 2007: Genetic Analysis Workshop 15: Gene Expression Analysis 
and Approaches to Detecting Multiple Functional Loci. The full contents of 
the supplement are available online at http://www.biomedcentral.com/
1753-6561/1?issue=S1.

References
1. Cordell HJ, Clayton DG: A unified stepwise regression proce-

dure for evaluating the relative effects of polymorphisms
within a gene using case/control or family data: application
to HLA in type I diabetes.  Am J Hum Genet 2002, 70:124-141.

2. Hastie T, Tibshirani R, Friedman J: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction New York: Springer; 2001. 

3. Tibshirani R: Regression shrinkage and selection via the lasso.
J Royal Stat Soc B 1996, 58:267-288.

4. Park MY, Hastie T: L1 regularization path algorithm for gener-
alized linear models.  J R Statistic Soc B 2007, 69(part 4):659-677.

5. Andrews DF, Mallows CL: Scale mixtures of normal distribu-
tions.  J Roy Stat Soc B 1974, 36:99-102.

6. Holmes CC, Held L: Bayesian auxiliary variable models for
binary and multinomial regression.  Bayesian Analysis 2006,
1:145-168.

7. Mertens BJA: Logistic regression modeling of proteomic mass
spectra in a case-control study on diagnosis for colon cancer.
In Bayesian Statistics 8 Edited by: Bernardo JM, Bayarri MJ, Berger JO,
Dawid AP, Heekerman D, Smith AFM, West M. New York: Oxford Univer-
sity Press; 2007:639-644. 

8. Green P: Reversible jump Markov chain Monte Carlo compu-
tation and Bayesian model determination.  Biometrika 1995,
82:711-732.

9. le Cessie S, van Houwelingen JC: Ridge estimators in logistic
regression.  Appl Stat 1992, 41:191-201.

10. Breiman L: Random forests.  Mach Learn 2001, 45:5-32.

Table 2: Evaluation of model selection

Average Prediction Error (SE)a

Selection methods No. selected SNPs Without regularization Ridge penalty Random forests

Stepwise/AIC 9 0.1536 (0.0049) 0.1506 (0.0044) 0.1586 (0.0068)
Lasso/AIC 29 0.1572 (0.0051) 0.1450 (0.0046) 0.1469 (0.0059)
Lasso/CV 17 0.1461 (0.0052) 0.1428 (0.0060) 0.1558 (0.0052)
Bayesian 2 0.1306 (0.0052)b 0.1306 (0.0052) 0.1336 (0.0043)

Trait locus DR/C* 0.1572 (0.0058)

aAverage prediction error was calculated from Replicates 2 to 10 using the optimally selected set of SNPs from Replicate 1.
bBold indicates the minimum average prediction error.

Table 1: Selection of SNPs

Selection methods No. selected SNPs Selected SNPs

Stepwise/AIC 9 2823 3301 3379 3384 3394 3437a 3439 3474 3477
Lasso/AIC 29 2823 2826 2827 2848 2859 3286 3301 3310 3352 3366 3379 3384 3387 3394 3396 3426 3429 3430 3437 

3439 3440 3447 3459 3474 3478 3481 3580 3581 3599
Lasso/CV 17 2823 2826 2827 2848 3301 3310 3379 3387 3394 3426 3429 3430 3437 3439 3440 3474 3599
Bayesian 2 3437 3439
Trait locus DR/C* 3437

a The bold-typed 3437 is the trait locus DR/C.
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