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Abstract
This paper presents a novel method of identifying phenotypically important regions of the genome.
It involves a form of association mapping that works by summarizing properties of the ancestral
recombination graph (ARG) of a sample of unrelated phenotyped and genotyped individuals. By
breaking the sample into many small sub-samples and averaging the results, it becomes
computationally tractable to measure the degree to which the evolutionary history of any locus is
consistent with the distribution of the phenotypes in the sample. Analysis of simulated rheumatoid
arthritis data demonstrates the efficiency and effectiveness of this method in identifying loci of large
phenotypic effect.

Background
Explicit reconstruction of the evolutionary history of a
sample can provide a powerful tool for detecting genetic
contributions to phenotypic variation in a population.
This new method exploits the fact that an allele shared
among individuals in a sample that contributes to similar-
ities of those individuals' phenotypes must have origi-
nated in an ancestral lineage shared only by those
individuals. Therefore, regions of the genome containing
genes that contribute to the differences among individuals
in the sample will tend to have evolutionary histories that
reflect the phenotypic distributions of those individuals.
Other regions not contributing to the phenotype in ques-
tion, will, due to recombination, have histories that are
uncorrelated with the distribution of phenotypes.

Cladistic analyses in association studies are a concept that
date back to the late 1980s [1], and have been imple-
mented several times since then [2-7]. Due to the com-
plexities of within-population evolutionary histories, they
have tended to employ clustering algorithms which result
in decidedly non-evolutionary cladograms of individuals.

This paper considers the case of phased haplotype data
drawn from a population of binary phenotypes. Given
infinite computing power, the process would involve
using the genetic data to infer the entire ancestral recom-
bination graph (ARG) of the sample. This would give the
entire set of evolutionary relationships of every piece of
every haplotype with every other piece of every haplotype.
From there it would be a simple matter to pick the
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branches of the graph that most consistently divide the
sample into groups of cases and controls, and then to infer
which segments of the haplotypes those branches
describe. This is not a feasible approach with current or
developing technology, so it is necessary to describe a heu-
ristic method for capturing the most important signal
from this graph without reconstructing it in its entirety.

What makes ARGs so difficult to reconstruct is that the
number of possible ARGs for a sample increases exponen-
tially with the number of haplotypes in the sample. While
it is not difficult to infer an optimal ARG for a sample of
extremely small size, it quickly becomes intractable for
sample sizes even in the tens of haplotypes. This method
capitalizes on the relative ease of estimating ARGs for
small sample sizes by successively computing ARGs for
many small sub-samples from within the set of haplo-
types. For each site in each sub-sample, it is easy to deter-
mine whether that ARG correctly divides the sub-sample
cases from the sub-sample controls. The frequency across
sub-samples is then the test statistic for determining the
general trend in the topology of the overall ARG at each
site. This statistic is a measure of the degree to which the
history of a locus is consistent with the resulting pheno-
typic distribution of the haplotypes and will be referred to
as the consistency of the sample.

Methods
Algorithm
This algorithm is an iterative process of selecting and ana-
lyzing subsets of the data. Each iteration starts with ran-
domly selecting quartets of haplotypes composed of two
control haplotypes and two unrelated case haplotypes.
The program beagle [8] is used to infer the minimum
number and location of recombinations necessary for
each quartet to conform to an infinite sites model of evo-
lution. Beagle scans the haplotypes for pairs of markers at
which all four possible gametes are present. Without
invoking recurrent mutation, this pattern indicates the
presence of a recombination event somewhere between
such marker pairs. Beagle assigns a minimum set of loca-
tions of recombination events that satisfies all such pairs.
These are used to divide the haplotypes in the quartet into
a set of genomic segments each consistent with a single
tree for an evolutionary history.

Next, each of these segments is passed to the pars program
in the package PHYLIP [9] to generate a single most parsi-
monious tree reflecting the history of that segment. This is
the inferred evolutionary tree that minimizes the number
of mutation events to describe all of the differences
between the sequences. Of the three possible topologies
for an unrooted tree with four taxa and no ambiguities
(Fig. 1), only one will contain a branch that separates the
two cases from the two controls. Segments generating a

tree with this topology are considered "consistent". Either
of the other two topologies is considered "inconsistent".
Segments that do not unambiguously generate a maxi-
mum parsimony tree that is either consistent or inconsist-
ent are thrown out.

After each segment is analyzed, the frequency across quar-
tets in which each site finds itself in a consistent segment
is calculated. This frequency, the consistency of the sam-
ple, is used as the test statistic. Elevated levels of consist-
ency correspond to sites better able to explain the
differences between case and control phenotypes. The
amount of information learned from the data increases
with each iteration but does so with asymptotically
diminishing returns once every possible quartet has been
picked.

Assessing significance
The significance of results is addressed through classical
hypothesis testing. The data are modeled as being drawn
at random from two populations, one of case haplotypes

Possible tree topologiesFigure 1
Possible tree topologies. Figure 1a represents a history 
consistent with the phenotypic distribution. Figures 1b and 
1c do not.
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and one of control haplotypes. Every mutation in the his-
tory of the sample distinguishes between two alleles and
creates two types of haplotypes, one with the ancestral
allele at that site and one with the derived allele. If a par-
ticular mutation contributes to the probability of disease,
then haplotypes containing that allele will be over-repre-
sented in the case population. The null hypothesis is that
the two types are represented with equal frequency in
both the case and control populations.

A given data set can be summarized as having K1 case hap-
lotypes with a1 copies of one type of haplotype and (K1 -
a1) of the other, and K2 control haplotypes with a2 and (K2
- a2) copies of the two types of haplotypes respectively. As
all the trees are unrooted, it is not necessary to identify
which type is ancestral and which is derived. Therefore,
which type is labeled (a) is an arbitrary designation.

The probability of a randomly drawn quartet being
counted as consistent, p(a1, a2, K1, K2), can be calculated
as

This is the probability of selecting a quartet composed of
two haplotypes of one type from the control set and two
haplotypes of the other type from the case set (which are
the quartets that contribute to the signal in the data) plus
1/3 times the probability of selecting a quartet that con-
tains three or four haplotypes of the same type and one or
zero of the other (these quartets are uninformative and
contribute only random noise).

The probability of a site being counted as consistent x
times after N quartets have been analyzed should be cal-
culated as

This is essentially a binomial sampling probability with
p(a1, a2, K1, K2) being the chance of success on a particular
trial, summed over all the possible values of the random
variables a1 and a2 times their probability densities, g(a1,
K1, α) and g(a2, K2, α), which are the binomial sampling
probabilities of drawing a of the arbitrarily labeled haplo-
types in K samples from a total population where the
labeled type of haplotype is at frequency α.

Because the probability densities of a1 and a2 depend on
the random variable α, the whole statement has to be inte-
grated over all possible values of α times its probability
density, f(α). Unfortunately, f(α) is unknown, so exact
marginal probabilities cannot be calculated directly.
However, for values of consistency above 1/3, which are
the only ones of interest, the likelihood of the null
hypothesis is at a maximum when α = 0.5, so assuming α
= 0.5 and calculating p-values by summing the probabili-
ties of finding the observed or higher number of consist-
ent quartets is conservative.

Results
Applied to the high-density simulated SNPs of Replicate 1
of the Genome Analysis Workshop 15 Problem 3 data set,
the algorithm correctly identifies Locus D as a site of great
importance in determining simulated disease status. Fig-
ure 2 shows calculated consistency values along the chro-
mosome after analyzing 1000 quartets. Using the entire
data set of 3000 case haplotypes and 2000 control haplo-
types gives an estimated p-value of less than 10-308 at the
correct locus. This is the lowest p-value for the chromo-
some, and in fact, the p-value may be considerably lower
than this because smaller values are difficult to compute
accurately. The actual numerical value has little meaning
beyond demonstrating the vanishingly small probability
of getting such a signal by chance. Figures 2b and 2c rep-
resent the same analysis carried out on smaller random
subsets of the data. In Figure 2b only a random subset of
10% of the haplotypes are used. The algorithm still cor-
rectly identifies the simulated locus and estimates a p-
value less than 10-65. In comparison, a simple chi-squared
test yields a p-value of 10-52 at the correct locus. Figure 2c
uses a random subset of 1% of the haplotypes, still cor-
rectly identifies the proper locus, and gives a p-value of
less than 10-11. The chi-squared test on these data gives a
p-value of 10-5.

Discussion
There are several practical matters to consider in applying
this method. The first is that while the simulated data ana-
lyzed in this paper were given as fully phased haplotypes,
most real data are only known as unphased genotypes.
Therefore, an additional step of estimating phase is neces-
sary. There are several widely used algorithms for accom-
plishing this, such as fastPHASE [10] or HAPLOTYPER
[11]. These algorithms use the population genotype fre-
quencies in the samples to estimate the haplotype fre-
quencies contributing to the sample. They are generally
very accurate over short ranges but can introduce errors,
essentially artificial recombination events between haplo-
types, between markers with very little linkage disequilib-
rium. These types of errors do not influence consistency
estimates much at all, because all of the information used
in estimating consistency comes from closely linked
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markers. Furthermore, introducing artificial recombina-
tions into the data set can only increase the type II error
rate, not the type I error rate.

Similarly, this method is conservative to errors introduced
by violations of the infinite sites model of evolution. Bea-
gle invokes the infinite sites model to infer the existence of
a recombination event. Recurrent mutation could cause
beagle to include extra recombination points. The only
detriment to this is that pars must now estimate two trees
from the information that it would otherwise use to esti-
mate just a single tree. This would cause a very local reduc-
tion in power but cannot create false positives. A massive
departure from the infinite sites model could mean that
the trees produced by pars are poor reconstructions of the

true historical events. However, this too should only
reduce the sensitivity of the test, not inflate the type I error
rate.

The consistency estimate is unbiased for all values of N. As
N increases, the p-value of any consistency estimate above
1/3 decreases. There are diminishing returns as N
becomes a sizeable fraction of all the possible quartets. As
the number of possible quartets is generally far larger than
is reasonable (or worthwhile) to examine, a practical
guideline would be to continue running the algorithm
until effects of a minimally interesting consistency value
are significant.

Conclusion
Population genetic data arise through a well understood
and well modeled process of evolution. In association
mapping studies, treating each locus and each haplotype
as independent, unrelated trials, as in the chi-squared test
and other simple regression analyses, robs an investigator
of much useful information in her or his data and opens
the door to spurious results. Making use of our under-
standing of the process through which these data are cre-
ated allows us to fashion more powerful and more
reliable methods. The method of consistency shows that
even a simple algorithm using piecewise approximations
of evolutionary histories can offer a great increase in sta-
tistical power. Additionally, statistics built on biological
models can represent easily intuited biological properties.
Unlike a chi-squared statistic, consistency is itself a meas-
urement that relates directly to the biological phenome-
non that it tests.
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