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Abstract

It has recently become possible to screen thousands of markers to detect genetic causes of
common diseases. Along with this potential comes analytical challenges, and it is important to
develop new statistical tools to identify markers with causal effects and accurately estimate their
effect sizes. Knowledge of the proportion of markers without true effects (p,) and the effect sizes
of markers with effects provides information to control for false discoveries and to design follow-
up studies. We apply newly developed methods to simulated Genetic Analysis Workshop 15
genome-wide case-control data sets, including a maximum likelihood (ML) and a quasi-ML (QML)
approach that incorporate the test statistic distribution and estimates effect size simultaneously
with pg, and two conservative estimators of p, that do not rely on the test statistic distribution
under the alternative. Compared with four existing commonly used estimators for p,, our results
illustrated that all of our estimators have favorable properties in terms of the standard deviation
with which pg is estimated. On average, the ML method performed slightly better than the QML
method; the conservative method performed well and was even slightly more precise than the ML
estimators, and can be more robust in less optimal conditions (small sample sizes and small number
of markers). Further improvements and extensions of the proposed methods are conceivable, such
as estimating the distribution of effect sizes and taking population stratification into account when
obtain estimates of p, and effect size.
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Background

Due to the rapid advances in genotyping technology,
genome-wide association studies with hundreds of thou-
sands of markers are now possible. These large scale
genetic studies offer great promise to expedite the discov-
ery of the common genetic variants affecting common dis-
eases [1]. A first step in the analyses is to understand the
properties of the massive data sets. Among the most fun-
damental properties are the proportion of markers with-
out true effects (p,) and the effect sizes (A) of markers with
effects. Knowledge of these parameters provides informa-
tion about how relevant the genotyped markers are for the
disease outcome. In addition, these parameters play a role
in a variety of applications. For example, estimates of p,
are commonly used in methods for controlling false dis-
coveries, which is important to prevent spending time and
resources on leads that will eventually prove irrelevant.
Another example is that knowledge of effect size A is
important to design follow-up studies that have adequate
power to replicate previous findings.

Multiple methods have been proposed to estimate p, [2-
4]. These estimators tend to make general assumptions
about the distribution of the test statistic under the alter-
native hypothesis, partly because many of them have been
developed in the context of microarray research where
specific assumptions may be problematic. However, in
genetics good approximations for the statistical test statis-
tic distribution are often available. This information can
be used to obtain more precise estimators in these appli-
cations. Once (a set of) markers have been identified as
being associated with the disease, the next objective of
interest is typically to estimate the effect sizes. Currently,
the most commonly used approach simply estimates the
effect size of the significant markers in the same sample
that has been used for testing. Due to the effects of sam-
pling error and the presence of false positives, this
approach overestimates the effect sizes considerably [5,6].
Several methods have been proposed to obtain more
unbiased effect size estimates such as a simple split-sam-
ple method, cross-validation, and bootstrap resampling
[7]. However, with all these methods that use the same
sample to first declare significance and then estimate the
effects sizes of the significant finding, it will remain diffi-
cult to obtain estimates that are both precise and unbi-
ased. We therefore proposed a set of related methods
(unpublished data) that estimate the average effect size A
of the 1 - p, markers with effects. Because our estimates are
not confined to only those markers that are declared sig-
nificant, they do not suffer from the upward bias caused
by sampling fluctuations producing large test statistics in
this specific sample. Our methods do not assign effect size
estimates to individual markers but estimate the average
of all markers with effects. This does not hamper the
design of subsequent replication studies. Thus, for any
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critical value chosen to declare significance, we can calcu-
late the number of markers with effects plus their average
effect size among the significant markers to design replica-
tion studies.

Our methods include a maximum likelihood (ML) and a
quasi-ML (QML) approach that incorporates the test sta-
tistic distribution and estimates A simultaneously with p,,.
In addition, we propose a conservative estimators of p,
(CON) and a variation of this conservative estimator that
adaptively estimates a fine tuning parameter (ADA CON).
Neither CON nor ADA CON rely on the test statistic dis-
tribution under the alternative but take advantage of the
specific knowledge that in large-scale genetic studies the p,,
must be very close to 1. Because these conservative estima-
tors do not consider the distribution under the alternative
hypothesis, they cannot estimate the average effect size
directly. However, we can still use the point estimate of
these conservative methods and include it in a second step
in a ML method to estimate the average effect size A for
our conservative estimators of p,. We apply our methods
to the simulated rtheumatoid arthritis (RA) case-control
data with 10 k single-nucleotide polymorphisms (SNPs)
in Genetic Analysis Workshop 15 (GAW15). We chose a
case-control design with SNPs because this is one of the
most important designs for mapping the genetic determi-
nants of complex human diseases through genome-wide
association studies. We also compared our estimators
with four existing estimators. We found two studies com-
paring multiple and non-overlapping sets of estimators
[2,3]. In these studies, the lowest slope (LOW S) and loca-
tion based estimator (LBE) showed the most favorable
properties and were therefore included here. In addition,
estimators developed by Storey (STO) [4] and Storey-Tib-
shirani (STO-TIB) [8] were included because they may be
among the more commonly used estimators.

Methods

The maximum likelihood methods (ML and QML) and
the conservative methods (CON and ADA CON) are
briefly described below. All 100 replicates in GAW15
Problem 3 were analyzed. To create a case-control data set
we selected the first sib from family-based data sets as
independent cases (N = 1500), and used all individuals in
control data sets.

Analyses were done with knowledge of the "answers" of
causal markers locations.

A single-value approximation for Pearson'’s statistic

SNPs are bi-allelic so that the initial statistical analysis will
consist of calculating Pearson's statistic to test whether the
frequency of the two alleles (A, a) or three SNP genotypes
(AA, Aa, aa) differs between cases and controls. For Pear-
son's test we can define a single parameter A that be inter-
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preted as an (average) effect size. For 2 x 2 tables, for
example,

A V8 Ja (1-aq)(0-1)
\/((0—1)(7/+5q1)+1)((o—1)6ql +1)
where o is the odds ratio, yand 6= 1 - y the proportions of

controls and cases, ¢, and 1 - ¢, the allele frequency in the
controls and cases.

We can derive the following approximation [9] for the dis-
tribution of Pearson's statistic to analyze for 2 x v contin-
gency tables that depends on only A.

nA?

1-A?

i

w2+ (1-87 )

where y,., is a (central) chi-square random variable with v

- 2 degrees of freedom and y; ( 1”AA2 5

) is a chi-square ran-

dom variable with 1 degree of freedom and non-centrality
2
parameter % . The fact that an approximation exist that

depends on only a single parameter (this does not have to
be the case as the asymptotic equivalent depends on many
parameters) is of great importance because it means that
we only have to estimate a single parameter from the data
the characterize the effect size. Note that if A = 0, the
approximation reduces to a central chi-square random
variable with v - 1 degrees of freedom under the null
hypothesis. In classic works on power analysis [10], cate-
gorical data analysis [11], and text books [12], the distri-
bution of Pearson's statistic is often approximated with a
non-central chi-square distribution with v - 1 degrees of
freedom and non-centrality parameter nA2, which also
depends on the single value A only. However, this approx-
imation can be inaccurate [9].

The maximum likelihood estimators

The likelihood function on the m test statistics t;,...,t, is

(s fas)  Saln,)
[’“ J[Eﬁ)(tl)]{ilh.‘,iml}ie‘{l,m,m} fo(fil ) o fO(timl )
m

where m; = m - m, the number of effects and m, the

L(ml , A) =

number of markers without effect, f, an approximating

density function under the null, and fA an approximating
density function under the alternative that depends on
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average effect size A. The ML estimator of m, and the aver-

age effect size are the 7it; and A that maximize function L.

Due to enormous number of terms in the sum, the likeli-
hood cannot be evaluated directly. For example, with a
total number of tests m = 100,000, of which m, = 5 mark-
ers have an effect, there are 8.33 x 1022 terms. Therefore,
we developed an implementation that uses recursive
series to calculate the likelihood. In addition, we devel-
oped a quasi-likelihood approach (QML) that is compu-
tationally much easier and faster. Here the logarithm on
the m test statistics t;, ..., is

m
{ quasi(Po,A) = Y 10g{po fo(t;) + (1 —po)falti)},
i=1
which is essentially the log-likelihood function of the
mixture model.

The conservative estimator

In addition to the ML estimator, we propose an estimate
of p, that does not rely on the test statistic distribution
under the alternative but capitalizes on the knowledge
that in large-scale genetic studies p, is close to 1 (CON
method). We calculate a cut-off value ¢ in such a way that
the probability that a non-causal marker has test statistic
value higher than c is k/m. If we denote the total number
of markers whose test statistic value is higher than ¢ as d,
then this estimate of p, is

Po :1_u.
m

Note that the expected number of non-causal markers
with test statistic value higher than the cut off c is km,/m
rather than k. This estimator can therefore be expected to
be conservatively biased. However, because p, = m,/m is
close to 1, we would expect the bias to be small.

A natural idea is to choose a value for fine-tuning param-
eter k that minimizes the mean square error
MSE(k) = E(py — po)* for which an analytical expres-

sion can be derived (not shown). A practical problem is
that the value of k that minimizes the MSE depends on the
unknown parameters p,, the average effect size, and the
covariances among the markers. Alternatively, we can esti-
mate k from the data (ADA CON method). That is, we first
estimate p, for a chosen value of k, e.g., k = 10. Second,
using that point estimate, we obtain an estimate of the
average effect size (e.g., by ML). Third, for the p, and the
effect size estimate, we calculate the optimal k. We repeat
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Steps 1 to 3 until there is no noticeable change in k. How-
ever, extensive simulation showed that this resulted in
somewhat less precise estimates than just calculating a
value of k using reasonable assumptions. The reason was
that the conservative method appeared fairly robust
against mis-specifications of k, which outweighed the
additional sampling error associated with estimating k.

Results

We identified four markers on chromosome 6 with
extremely low p-values and effect sizes that were five times
larger than the average effect sizes of the other markers
with effects (see Table 1). Because a complex statistical
method is not needed to detect such effects, we excluded
these four markers and analyzed the remaining set of
markers (N = 9183). Table 1 displays results across the
100 replicates. Whereas our estimators and LOW S never
estimated p, to be 1, LBE consistently estimated p,to be 1,
and STO and STO-TIB were somewhere in between. The
mean p, estimates were very close to each other in our four
new methods but deviated from four existing methods.
The only exception was the LOW S method, in which the
mean p, estimate was closer to what we obtained from the
new methods. The precision of p, estimates was also high
in the new methods as the standard deviations were small.

Based on the p, estimate in our new methods, the average
number of total causal markers with main effects was 18.
The average numbers of causal markers in the LOW §,
STO-TIB, STO, and LBE were 21, 150, 256, and 0, respec-
tively. Clearly, STO-TIB and STO overestimated the
number of effects and LBE underestimated the number of
effects. It is also important to note that standard errors of
the estimates were about 100 times larger for STO-TIB and
STO, implying that the number of markers was estimated
very imprecisely.

http://www.biomedcentral.com/1753-6561/1/S1/S143

The second part of Table 1 shows results for the estimated
average effect size A. The ML methods estimate A and p,

simultaneously. The other estimators do not consider the
distribution under the alternative hypothesis, and can
therefore not estimate the average effect size directly.
However, in these cases we can still use the point estimate

py obtained with these estimators and include that in the
a maximum likelihood method that finds A by maximiz-

ing €(m - mpg, A). In cases where the point estimate pg

equals 1, the effect size cannot be estimated. In these sce-
narios A was treated as "missing". Results showed that the
estimated average effect size was 0.083 in all four new
methods in which the ML method was slightly more pre-
cise. The estimated average effect size was less precise and
considerably lower with STO and STO-TIB, reflecting the
downward bias and larger standard deviation in these p,

estimates.

Discussion

Results illustrated that all of our four new estimators have
favorable properties in terms of the standard deviation
with which p; is estimated. The ML and QML estimators
have the additional advantage that they provide a direct
estimate of average effect size A. Because the point esti-
mates of p, in both CON and ADA CON methods are very
similar to that in the ML and QML methods, the average
effect size is expected to be similar across methods. This is
important because these two parameters are somewhat
intertwined and the estimate of the average effect size
helps the interpretation of the p, estimate. For example,
without this effect size estimate, it is unclear whether the
estimated numbers of causal markers have very small or
large effects.

Table I: Estimating p, and average effect size with different methods using all 100 replicates

po Estimates

Average effect size estimates

No. times py = | Mean Std. dev. Mean Std. dev.
Quasi-maximum likelihood 0 0.998425 1.97 x 104 0.083 5.10 x 103
Maximum likelihood 0 0.998424 1.92 x 104 0.083 4.92 x 103
Conservative (k = ) 0 0.998409 1.72 x 104 0.083 4.94 x 103
Adaptive conservative 0 0.998425 2,12 x 104 0.083 5.09 x 103
Lowest slope 0 0.998162 2.99 x |04 0.082 5.09 x 103
Storey-Tibshirani 38 0.984106 1.87 x 102 0.052 2.79 x 102
Storey? 2 0.972607 2.59 x 102 0.051 2.75 x 102
Location based estimator 100 | 0 - -
aFor Storey's, estimator we used the grid he suggested in his article (0.01, 0.02,...,0.95).
b-—, po = I. There is no marker to estimate effect size.
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On average, the ML method performed slightly better
than the QML method. Furthermore, we found in other
simulations that the QML estimator can be unstable. In
general, the ML method may therefore be the method of
choice. Results also showed that the CON method per-
formed well and was even slightly more precise than the
ML estimators. One reason is that the CON method only
estimates a single parameter, whereas the ML methods
estimate two parameters. However, this observation is
also consistent with previous simulations showing that in
less optimal conditions (small sample sizes and small
number of markers), the CON method can be more
robust. Indeed, as another example of its relative robust-
ness, the CON method performed equally well when the
four markers with extremely large effects were included
but the ML estimators became somewhat less precise.

Linkage disequilibrium causes test statistics between
markers to be correlated. Extensive simulations were per-
formed to examine the impact of such correlated tests on
our estimates of the p, and A (data not shown). Results
demonstrated that correlated tests mainly increase the var-
iance of these estimates but did not introduce bias. This
makes intuitive sense and essentially mimics other scenar-
ios where certain statistics (e.g., mean) are estimated with
correlated observations.

Further improvements and extensions of the proposed
methods are conceivable. An example involves work we
are currently doing to estimate the distribution of effect
sizes. The extension essentially consists of conditioning
on the number of markers with effects and then maximiz-
ing the likelihood L(A|m,). Thus, we start with estimating
the largest effect in the data set, then the second largest,
continuing until the estimated effect sizes become (very)
small. Another example is that in case-control studies,
population stratification can cause spurious associations
between marker alleles and disease status when both dis-
ease prevalence and allele frequencies differ among sub-
groups. Using the principle of genomic control [1,13,14],
our estimators can be further adapted to obtain estimates
of p, and A that take stratification into account.
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