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Abstract
In the fast-developing field of expression quantitative traits loci (eQTL) studies, much interest has
been concentrated on detecting genomic regions containing transcriptional regulators that
influence multiple expression phenotypes (trans-hubs). In this paper, we develop statistical methods
for eQTL mapping and propose a new procedure for investigating candidate trans-hubs. We use
data from the Genetic Analysis Workshop 15 to illustrate our methods. After correlations among
expressions were accounted for, the previously detected trans-hubs are no longer significant. Our
results suggest that conclusions regarding regulation hot spots should be treated with great
caution.

Background
The emerging microarray-based gene expression technol-
ogy enables quantitative geneticists to conduct systematic,
genome-wide linkage analysis to detect genomic loci that
control gene-expression variations. One of the common
features of expression quantitative trait loci (eQTL) stud-
ies is the detection of trans-hubs, "chromosomal regions
that affect the expression of a much larger number of
genes than expected by chance" [1]. However, a major
concern in trans-hub detection is the high false-positive
rate due to the complex correlation structure of gene
expressions [1]. If a group of genes are highly correlated
and a QTL is detected for one of them, then there is a large
chance that other expression phenotypes in this group are
also mapped to the same QTL, regardless of whether the
reason for co-expression is indeed co-regulation at this
QTL.

In this paper, we first describe a robust score statistic
method designed for three-generation pedigrees for link-
age detection. We then introduce a new method for inves-
tigating candidate trans-hubs. To account for correlations
among gene expressions, we treat the expression of addi-
tional genes as covariates in the variance-component
model of a target gene, and employ sparse regression tech-
niques to remove the covariates' components before test-
ing linkage. The effects of accounting for expression
correlations in linkage analysis are illustrated in the
Results.

We apply the proposed methods on Genetic Analysis
Workshop 15 (GAW15) Problem 1 data [2-4]. This data
set consists of 14 three-generation Centre d'Etude du Pol-
ymorphisme Humain pedigrees. Genotypes of 2882 auto-
somal and X-linked SNPs are provided for each
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individual. Expression levels of ~8500 genes in lymphob-
lastoid cells were obtained using the Affymetrix Human
Focus Arrays [4].

Methods
Variance-component model and score statistics
In this section, we derive robust score statistics under the
variance-component model [5] to map QTLs. We
assumed Hardy-Weinberg equilibrium and linkage equi-
librium throughout. The single-locus additive model for a
phenotype Y having a mean value μ is given by

Y = μ + αm + αf + e, (1)

where αi = αi(τ) denotes the additive genetic effect of allele

x at locus τ (the subscript m or f denotes the parental ori-

gin of the allele). We assume that E(αm) = E(αf) = 0, that

αm and αf are uncorrelated, and that the residual term e is

uncorrelated with the explicitly modeled genetic effects. It
is straightforward to compute the conditional covariances
given the identity-by-decent (IBD) sharing numbers
under Eq. (1). For example, for two siblings i, j,

, where νij(τ) is

the IBD sharing number between the two siblings at the

trait locus τ, ρs is the phenotypic correlation among sib-

lings and  is the linkage parameter.

For each phenotype Y, the null hypothesis of no linkage

can be written as H0: α0 = 0. The working assumption for

the variance-component model is that the conditional
distribution of the phenotypes in a pedigree given the
pair-wise IBD sharing information at a QTL is multivariate
normal. At marker t (a putative trait locus), the score sta-

tistic for testing α0 = 0 is then , where n

is the number of pedigrees and

Here, Yi denotes the vector of phenotypes in the ith pedi-
gree; Ai(t) is the IBD sharing matrix for the ith pedigree at
marker t:

where  is the estimated IBD sharing number between

the jth and κth member at marker t; μ, σY, Σ are the pheno-

typic mean, variance, and correlation matrix, respectively.
We consider three different types of phenotypic correla-
tions for the three-generation pedigree: sibship correla-

tion (ρs); grandparent-grandchild correlation (ρg); and

parent-offspring correlation (ρo). All of these nuisance

parameters are estimated by their corresponding sample
estimators. We then standardize the above score by its
conditional variance given the phenotypes:

. Let

ai,t(j, κ) = Ai(t)(j, κ), then the calculation of the above

quantity involves estimation of E[ai,t(j, κ)ai,t(j'k')]. We

identify 11 different types of cross products for two pairs

(j, κ) and (j'k') which have a nonzero expectation (e.g., (j,

κ) and (j'k') are two sib pairs with one sibling in com-
mon). We pool the same type of cross products across all
pedigrees and estimate the above expectation by sample
mean.

We then define the robust score statistic at marker t as

, which is asymptotically normally

distributed with mean zero and variance one, no matter
what the actual phenotypic distribution is. Because we do

not know the location of the QTL τ, we scan the whole
genome with the test statistic: Zmax = maxtZ(t), where the

maximum is taken over all marker loci t throughout the
genome.

Investigation of trans-hubs
When linkage exists between a genome region and an
expression phenotype, the regulation can be "indirect"
and act through one or more intermediate genes (that is,
this region regulates some intermediate genes and their
expression in turn regulate the phenotype). Such indirect
regulations are usually less interesting. To detect biologi-
cally interesting trans-hubs, only direct linkage would be
meaningful. In this section, we propose a method to dis-
tinguish direct and indirect regulations/linkages.

We will illustrate the idea through a simple example. Con-
sider a system of three components: one candidate QTL
(X) and two expression phenotypes: Y1, Y2. It can be
shown that if both Y1 and Y2 are linked to X and if the link-
age strength (defined as the proportion of variation
explained by X) of Y2 is no greater than that of Y1, then the
system will match to one of the two models: a) X regulates
Y1 and X regulates Y2 (connection between Y1 and Y2 is
allowed); or b) X regulates Y1 and Y1 regulates Y2. (Due to
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limitation of space, detailed models and proofs are omit-
ted.) We need to distinguish these two models in order to
decide whether the linkage between X and Y2 is direct
(Model (a)) or indirect (Model (b)). This can be revealed
through investigating the residual R21 of the regression
model Y2 ~ Y1: under Model (a), R21 links to X; while
under Model (b), R21 does not link to X. On the other
hand, if we consider the regression model Y1 ~ Y2, the
residual R12 will link to X under both models. However,
the linkage might be weak. Therefore, in order to avoid
performing unnecessary linkage tests on residuals, which
decreases the power, we propose to first order the expres-
sion phenotypes with respect to their linkage strength at
the candidate hub; and then for each expression trait, only
those phenotypes with stronger linkage evidence are used
as covariates to derive the corresponding residual in the
model below. As a result, for any pair of expression traits,
there is only one model having the two traits on the oppo-
site sides of the equation.

According to the above discussion, we introduce the vari-
ance-component model

Yi = μ + Y-iβ + αm + αf + e, (2)

where a set of expression phenotypes other than Yi are
treated as covariates (Y-i). Define Ri = Yi - Y-iβ. Model (2)
becomes Ri = μ + αm + αf + e, for which the score statistics
described previously can be applied to test linkage. Thus,
the remaining task is to properly derive Ri: the residual of
the regression model Yi ~ {Y-i}. Because of the high
dimensionality of the expression phenotypes ({Y-i}), it is
crucial to maintain sparsity in the regression models to
avoid over-fitting. For this purpose, we apply a sparse
regression technique called elastic net [6] to derive Ri.
Elastic net aims to minimize the loss function L(λ1, λ2, β)
= ||Y - Xβ||2

2 + λ2||β||2
2 + λ1||β||1. The ridge penalty term

encourages a grouping effect: strongly correlated predic-
tors tend to be in or out of the model together; the lasso
penalty term enables the algorithm to have a more sparse
representation and thus serves as a model selection tool
[6].

We propose the following procedure for investigating a
candidate trans-hub region:

1. Order expression phenotypes according to the linkage
strength to this region (based on the score statistics Z at
the hub) from the largest to the smallest.

2. For the ith ordered expression Y(i), perform Elastic net
regression Y(i) ~ {Y(j)}j<i with λ2 = 1 and maximum step
kmax. Record the corresponding residue as R(i).

3. Perform linkage analysis on {R(i)}i using the robust
score statistics.

4. An expression trait is considered to have a direct linkage
to the candidate region if both the original expression Yi
and residual Ri show significant evidence of linkage.

For the GAW15 application, the maximum step for run-
ning elastic net is set to be kmax = 20, which is the mean
optimal step chosen using Mallows' CP criterion [7]
among 100 randomly picked regression models (in each
model, the expression of one randomly chosen gene is
regressed on the expressions of all other genes).

Data analysis
We first performed an empirical normal quantile transfor-
mation for each gene's expression to make them margin-
ally normal [8], for the purpose of improving power of
linkage detection. We want to point out that the validity
of our test statistic is robust to the distributional assump-
tion of the phenotypes because it is standardized by the
conditional variance of the score statistic [9,10].

For genotype data, 1197 SNPs were selected from 22 auto-
somes, such that the inter-marker distance is at least 0.1
cM to avoid linkage disequilibrium. The resulting map
has an average inter-marker space of 3.1 cM, mean heter-
ozygosity of 0.42, and mean missing rate of 3.89%. Merlin
[11] was used for IBD inference based on the Rutgers sex
average linkage map provided by Sung et al. [12]. Linkage
tests were performed for the 3554 most variable genes
selected by Morley et al. [4] and gender was used as a cov-
ariate.

The threshold at each genome-wide significance level was
estimated based on 500 permutations. In each permuta-
tion cycle, pedigrees of the same size were permuted;
within a pedigree, phenotypes were permuted among
individuals of the same type (i.e., generation and gender).
We also calculated the thresholds according to a Gaussian
approximation with skewness correction [10], which
results in similar thresholds (Table 1). We observed that
the confidence intervals derived from permutation are
wider than what would be expected if all tests were inde-
pendent. This also suggests that the correlations among
gene expressions should not be ignored when examining
false positives.

Results
The result of eQTL analysis are summarized in Tables 1
and 2. At the genome-wide 0.001 significance level
(point-wise p-value < 7 × 10-9), we identify 24 expression
phenotypes with at least one significant eQTL, among
which five overlap with the genes reported in Table 1 of
Morley et al. [4] (TM7SF3, HSD17B12, CHI3L2, DSCR2,
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and DDX17). We also performed genome scans using
only sibship data, which, not surprisingly, resulted in a
lower power compared to the analysis using whole pedi-
grees (Table 1).

Following Morley et al. [4], we define cis-regulators as the
eQTL that map within 5 megabases (Mb) of the target
gene and all other eQTL are defined as trans-regulators. To
illustrate the proposed trans-hub investigation method,
we examine the trans-eQTL events (based on the original
expression data) at the genome-wide 0.05 significant level
to harvest enough eQTL hits for deriving candidate trans-
hubs. The numbers of trans-hits and cis-hits at different
significance levels are summarized in Table 3. The
number of trans-hits dropped dramatically as the signifi-
cance levels became more stringent, indicating an overall

lower confidence of the trans-linkage detection. The
genomic locations of the eQTLs detected at the 0.05 sig-
nificant level suggest two possible hot spots, one at
9p13.3 (30.8 Mb to 35.1 Mb) with 13 trans-hits, and
another at 14q32 (94.7 Mb to 98.2 Mb) with 11 trans-hits
(Figure 1, left panel). The latter region, 14q32, has also
been recognized as a candidate trans-hub by Morley et al.
[4]. If regulators for expression phenotypes were inde-
pendently and randomly distributed along the genome,
the probability of the maximum number of hits being at
least 13 or 11 are both less than 1 × 10-6. However, based
on permutation results (in the original data), the chance
of observing a trans-hub with at least 13 hits is about
11.2%, and the chance of at least 11 hits is as high as
22.4%. These numbers imply that the false detections of
trans-eQTL are clustered instead of uniformly distributed

Table 1: Number of expressions with at least one significant eQTL

Genome-wide significance level (point-wise significance level)

0.05 (4.7 × 10-6) 0.01 (3.2 × 10-7) 0.001 (6.7 × 10-9)

Threshold by Gaussian approximation 4.43 4.98 5.68
Number by chance (95% CI) 177.7 (162.2, 193.2) 35.6 (28.5, 42.6) 3.6 (1.3, 5.8)

Original data
Threshold by permutation 4.36 4.95 5.68
Number by permutation (95% CI) 176.0 (139.0, 224.5) 36.0 (24.0, 56.0) 4.0 (0, 9.0)
Observed number 235 66 24
Sibship only 173 40 13

Residual data (9p13.3)
Threshold by permutation 4.45 5.06 5.81
Number by permutation (95% CI) 180.0 (154.0, 207.0) 36.0 (25.0, 48.0) 4.0 (0, 8.0)
Observed number 225 87 26

Residual data (14q32)
Threshold by permutation 4.46 5.07 5.85
Number by permutation (95% CI) 178.0 (151.5, 205.0) 36.0 (24.0, 47.0) 3 (0, 8.0)
Observed number 212 70 23

Table 2: Expression phenotypes with the strongest evidence of linkage from genome scans

Point-wise p-value Gene Gene location cis/trans eQTL location

<10-15 LRAP 5q15 cis Chr 5 (99080578)
<10-15 HLA-DQB1 6p21.3 transa Chr 6 (37592767)
<10-15 CHI3L2 1p13.3 cis Chr 1 (111704864)
<10-15 POMZP3 7q11.23 cis Chr 7 (75651464)
<10-14 CSTB 21q22.3 cis Chr 21 (44061921)
<10-14 TBC1D8 2q11.2 transa Chr 2 (108214542)
<10-13 DSCR2 21q22.3 trans Chr 9 (75300235)
<10-13 CRYZ 1p31-p22 transa Chr 1 (67949299)
<10-11 EGR2 10q21.1 trans Chr 20 (42643248)
<10-11 TM7SF3 12q11-q12 transa Chr 12 (39239200)
<10-11 DDX17 22q13.1 cis Chr 22 (39410468)

aeQTL resides on the same chromosome of the target gene, although being more than 5 Mb away from the target gene.
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along the genome. We hypothesize that this is partly due
to the expression correlations.

To further investigate our hypothesis, we adjusted for the
expression correlations as described in the Methods on
the trans-hub at 9p13.3. The linkage results of residuals
are also summarized in Table 1, which show comparable
number of eQTL detections as before. At the genome-wide
0.001 significance level, 26 expression phenotypes were
identified, of which 9 overlap with the original 24 expres-
sion phenotypes mapping to the similar chromosomal
regions (TBC1D8, HLA-DPB1, CSTB, BCKDHA, DSCR2,
POMZP3, CHI3L2, HSD17B12, and TM7SF3). However,
the hub phenomenon becomes much less obvious now:
trans-eQTL hits were very evenly distributed along the
genome (Figure 1, right panel). One explanation is that
the overall pair-wise expression correlations in the resid-
ual data are much smaller than those in the original data:
the median absolute correlation is 0.052 and 0.139,
respectively. The maximum number of trans-hits of one 5-
Mb region at the genome-wide 0.05 significance level is

only 4. The number of trans-hits at 9p13.3 drops to 3,
while among the 500 permutation cycles performed on
residual data, none has a maximum number of trans-hits
smaller than 3. The same analysis is done for the trans-hub
at 14q32 and the results are similar (Table 1). The number
of trans-hits at 14q32 drops to 4.

Thus, we conclude that there is not enough evidence to
claim either two candidate regions we examined as a trans-
hub. However, we do find two statistically significant,
trans-regulated, phenotypes: DSCR2 (Down Syndrome
Critical Region gene 2) is the most significant (point-wise
p-value of 10-12) gene linked to the 9p13.3 region;
MAP3K6 also shows strong evidence of linkage to the
same region according to both the original phenotype and
the residual phenotype. MAP3K6 encodes a member of
the serine/threonine protein kinase family, and has a
point-wise p-value of 3 × 10-7. The correlation between
expressions of DSCR2 and MAP3K6 is quite small: 0.074.
These two trans-regulations may deserve further investiga-
tion.

Table 3: Number of cis-hits and trans-hitsa

Genome-wide significance level (point-wise significance level)

0.05 (4.7 × 10-6) 0.01 (3.2 × 10-7) 0.001 (6.7 × 10-9)

cis-hits Original (percentage) 108 (0.72) 74 (0.49) 46 (0.30)
Residualb (percentage) 182 (1.20) 128 (0.85) 68 (0.45)

trans-hits Original (percentage) 1166 (0.028) 296 (0.0070) 96 (0.0023)
Residualb (percentage) 1057 (0.025) 291 (0.0069) 63 (0.0015)

aThere are 4,239,027 trans-pairs and 15,111 cis-pairs in total
bResiduals are regarding 9p13.3 (See text for more details.)

Distribution of trans-hit along the genomeFigure 1
Distribution of trans-hit along the genome. The x-axis represents the genome order of the 1197 markers. The y-axis 
represents the number of trans-hits in a 5-Mb neighborhood region of each marker. Markers on different chromosomes are 
separated by vertical gray lines. The left panel is for the original expression data. The right panel is for the residual analysis with 
respect to 9p13.3. The positions of DSCR2 (21q22.3) and MAP3k6 (1p36.11), which show strong evidence of trans-linkage to 
9p13.3 region, are indicated in the left panel.

MAP3K6 DSCR2 
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Discussion
In this paper, we perform linkage analysis for GAW15 data
using robust score statistics, which enjoy excellent compu-
tational efficiency (20 seconds for computing the score
statistics for 3554 expressions on 1197 markers in R on a
Thinkpad X40 laptop), and enable us to carry out large-
scale permutation studies. Using the original phenotypes,
we identify two candidate trans-hubs, one at 9p13.3 and
the other at 14q32. However, after accounting for the
expression correlations in the linkage analysis, both trans-
hubs disappear. This suggests that conclusions with regard
to regulation hot spots should be interpreted with great
caution.

Controlling false positives is one of the most important
concerns in processing large high dimensional data sets.
Without the controlling of false positives, power is not a
meaningful quantity. In this paper, we focused on hubs of
direct trans-regulation, which is conceptually different
from the situation where both direct and indirect linkages
are sought after. For this purpose, there are two types of
false positives: i) the locus and the gene are not linked at
all, while a linkage is claimed; ii) the locus and the pheno-
type are indirectly linked, while a linkage is counted as a
direct regulation. The proposed method helps to prevent
both types of false positives. Protection against the second
type of false positives is discussed in the Methods. As to
the first type of false positives, due to correlations among
expressions, they do not randomly distribute along the
genome. The proposed method also acts as a safeguard
against detecting false hubs resulting from this source,
since the residuals are usually much less correlated.
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