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Abstract
Several genetic determinants responsible for individual variation in gene expression have been
located using linkage and association analyses. These analyses have revealed regulatory
relationships between genes. The heritability of expression variation as a quantitative phenotype
reflects its underlying genetic architecture. Using support vector machine regression (SVMR) and
gene ontological information, we proposed an approach to identify gene relationships in expression
data provided by Genetic Analysis Workshop 15 that would facilitate subsequent genetic analyses.
A group of related genes were selected for a shared biological theme, and SVMR was trained to
form a regression model using the training gene expressions. The model was subsequently used to
search for and capture similarly related genes. SVMR shows promising capability in modeling and
seeking gene relationships through expression data.

Background
In genome-wide linkage and association analyses using
gene expression data from individuals in 14 CEPH (Cen-
tre d'Etude du Polymorphisme Humain) Utah families,
Cheung and colleagues [1-3] found that variation in the
expression level of the gene chitinase-3-like 2 (CHI3L2)
was associated with a single-nucleotide polymorphism
(SNP) marker, rs755467, in its promoter region. Other
studies have also suggested that variation in a regulatory
region of a gene is probably the main mediator of pheno-
typic divergence in evolution [4,5]. The expression varia-
tion pattern correlates with the genes' genetic architecture.
The characteristics of expression variation patterns of

genes in a biologically defined group may also describe
the landscape of the genetic architectures of the genes. We
proposed an approach to determine gene relationships on
the basis of expression data so that the underlying genetic
and biological classification can be established. Our
approach will be useful in expression studies, which usu-
ally deal with thousands of genes.

Methods
We adapted support vector machine regression (SVMR)
[6,7] for our analysis because of its ability to handle mul-
tidimensional data and non-linear modeling. In SVMR
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formulation, the goal is to estimate an unknown continu-
ous-value function based on a set of a finite number of
samples (xi, yi), i = 1,..., d + 1, where d-dimensional input

x ∈ Rd and output y ∈ R. In SVM regression, the input x is
first mapped onto an m-dimensional feature space using a
nonlinear mapping function called a kernel, and then a
linear model is constructed in this feature space, which

can be given by , where gj(z), j =

1,..., m denotes a set of nonlinear transformations, and b

is the "bias" term. The goal is to find an f(z, ω) that has at

most ε deviation from the actually obtained target yi for all

the training data and at the same time is as flat as possible
to reduce the model complexity by minimizing the norm
||w||2 in the following function:

where ξi and  are slack variables that define the "soft

margin" to measure the deviation of training samples out-

side the ε-insensitive zone and C is the regularization
parameter that determines the trade-off between model
complexity (flatness) and the degree to which deviations

larger than ε are tolerated in the optimization formula-
tion.

We selected a certain number of genes in a defined rela-
tionship, e.g., sharing the same biological functions or
protein family, as a training sample for SVMR with
defined parameters (kernel functions, ε, and C), to learn
their expression patterns. The learned SVMR was then
used to "recruit" new expression data of another gene
from outside the training set. With predefined criteria,
SVMR judged whether the new gene belongs to the same
group. The newly recruited genes then grew into a cate-
gory of a relationship that is expected to show similarity
with the defined relationship in the training set. Compar-
ison of linkage analysis results, ontology information,
and/or regulation pathways of the new genes with the
existing ones will further evaluate the search results.

We devised a four-level search strategy to explore this
approach: search within highly correlated genes, search
within the genes of the same biological family, search
using trained genes in one biological family over ones of
another biological family, and "random walk" search

using randomly picked genes to search randomly in the
whole sample set (Table 1).

Study subjects were 194 individuals from 14 CEPH Utah
families with 2819 genotyped SNPs across 22 autosomal
chromosomes provided by Genetic Analysis Workshop
15. Expression data using 3554 gene probes in lymphob-
lastoid cells of the above subjects were obtained using
Affymetrix Human Focus Arrays. Gene annotation and
ontology information were available on 8793 genes,
including the 3554 genes probed.

The gene expression data were tested for normality using
Shapiro-Wilk and Anderson-Darling tests, and pair-wise
correlations were tested using Pearson's correlation test
for normally distributed expressions and Kendall and
Spearman's test for non-normally distributed expressions.
These tests were performed for all phenotypes that were
stratified by generations in order to guide a better compar-
ison in later relationship searches.

Quantitative trait locus (QTL) nonparametric linkage
(NPL) linkage analyses were carried out using Merlin
1.0.1 for nonparametric QTL with options -qtl and -npl
over the 2819 autosomal SNPs. This QTL NPL approach
in Merlin provides nonparametric LOD score using quan-
titative trait-based on a general framework defined in the
program's documentation [8]. We used the "1-Mb-to-1-
cM" rule to convert the physical map into a genetic one.
As a supplemental analysis, QTL regression analysis using
Merlin-Regress was performed.

We broke down the given gene ontology information into
minimum meaningful phrases and uploaded it into a
database using mySQL4.1 for easy query. Genes of a bio-
logically related group were selected using definitions in a
database search, e.g., "ribosomal proteins" and "DNA
repairing".

We used mySVM [6] for SVM regression. Once the training
data were formed, the target data were assigned either ran-
domly or in a predetermined manner, depending on the
search scenario used. The predicted results were then com-
pared with the observed values of the targeted gene, and
the mean and standard deviations of the differences were
calculated. The final rank of the results was based on both
mean and standard deviation values. The lowest values
ranked the highest, and usually the top 0.6–1.2% genes
were selected as captured targets for further studies. Two
types of kernel functions were used: dot and polynomial,
with degree 1 through degree 4.

The biological relationship of the targeted genes to the
training genes was inspected, comparing both genome-
wide linkage results and ontological description and/or
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regulation pathways using PathwayStudio with ResNet 3.0
database (Ariadne Genomics, Inc.).

Results
Linkage analysis
Both non-parametric QTL linkage analysis and QTL
regression linkage analysis were performed for selected
genes on 22 autosomal chromosomes. Our results
showed the NPL LOD scores ranged between 1 and 4.92,

and the regression LOD scores fluctuated more dramati-
cally, e.g., some LOD scores were >20.

We compared our QTL NPL results with those of Morley
et al [2]. Of the 10 genes previously charted, we were able
to find 9 in our 3554-gene expression data, and the com-
parison showed 5 of the 9, including CHI3L2, DDX17,
and ALG6, were highly comparable in genome-wide LOD
score distribution (Fig. 1). Three of the remaining four

Results of genome-wide linkage analysis of fourselected genesFigure 1
Results of genome-wide linkage analysis of fourselected genes. Linkage results for expressions of four genes that were 
compared with the ones presented in Morley et al. [2]. The Affymetrix probeset IDs are listed in parentheses.

Table 1: SVMR 4-level search strategy and results

Search level

1 2 3 4

Theme Genes that contained highly 
correlated genes

From the same biological family Across biological families Random Walk (all genes)

Sample size 1000 55 RPa 49 ZFPb 49 3554
Sample selection criteria A total of 1000 genes that contained 

100 highly correlated genes
all in RP family, all in ZFP family RP, ZFP, and DEADc The full data set of all 3554 

genes
Training size 2 genes per training, 3 trainings 2 to 10 genes 3 genes per training 3 to 20 genes
Training selection criteria Corr > 0.85, p < 0.001 Randomly from 55 RP genes or 

from 49 ZFP genes
Only from RP family Randomly from entire sample

Best training size 2 genes 4–5 genes 3 genes 3–7 genes
Example of training genes 1. 200088_x_at and 200809_x_at 

(both are different problems for 
RPL12) (Pearson corr > 0.92 and 
Spearman corr > 0.90, p < 0.0001)
2. RPL32 and RPS18 (Pearson corr > 
0.94, p < 0.0001)
3. DDX3Y and EIF1AY (Pearson corr 
> 0.9875, p < 0.0001)d

RPS11
RPS10
RPS3A (201257_x_at)
RPS16

RPS4X
RPS4Y1
RPS5

C1D
ALOX5
ENO2
RERE

Example of captured genes 1. 200088_x_at and 200809_x_at
2. RPL32, RPS15, RPS18, RPS3A, and 
RPS28
3. DDX3Y and EIF1AY

1. RPL27, 
RPS3A(2000099_s_at), 
RPS3A(201257_x_at), RPS29, 
RPS28
2. RPS15A, RPS18, RPS12, 
RPS19
3. Similar results were seen 
among genes with ZFP family

DDX39
DDX3Y
DDX58
DDX26

SCAP1
SGPP1
TGFBR3
CD9
VAMP8

aRP, ribosomal proteins family
bZFP, zinc finger proteins family
cDEAD, DEAD box proteins, which are characterized by the conserved motif (Asp-Glu-Ala-Asp) (DEAD).
dThree pairs of highly correlated gene expressions as three separate training sets, and search separately back in the sample, and found itself and the others.
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showed partial matches for distribution of LOD scores
(either the relative peak height/width or location was
slightly different). HOMER1 showed the least agreement
with results from Morley et al.

Searching among linear correlated genes
We chose three pairs of highly correlated gene expressions
as three separate training sets for SVMR and searched sep-
arately in a subset of 1000 genes that contained highly
correlated genes. As we expected, the correlated expres-

sions showed strong parallelism in their genome-wide
LOD score distributions (Fig. 2 and Table 1).

Searching among selected gene groups
We selected a group of genes from the same biological
family, a set of 55 ribosomal protein genes. We found this
group of genes closely shared similar biological functions,
but not all were correlated in their expression data.

Highly correlated expressions show similar linkage analysis results but may not be biologically relatedFigure 2
Highly correlated expressions show similar linkage analysis results but may not be biologically related. Expres-
sion data from groups A and B are highly correlated and they all belong to the same biological group, ribosomal proteins. A1 
and A2 are from the same gene, RPL12. Correlation coefficients for expression of genes C1 and C2 are > 0.987, but they appear 
to share no direct biological relationship, even though their NPL LOD score distributions show high similarity as well.
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We ranked the searched genes by the mean and standard
deviation of the difference in expression levels between
the selected gene and the one predicted from SVMR. If any
search identified its own training genes, a high score for
accuracy and specificity was given. Measurements of
matching included both expression variation patterns and
genome-wide LOD distribution (how many peaks in size
and location along 22 chromosomes were matched or
missed), and either a positive or negative point was scored
for its sensitivity (Fig. 3 and Table 1).

We observed increasing specificity as the training set size
grew, which seemed to taper off at a training set size of
around seven genes. The sensitivity fluctuated slightly
when the training set size was two or three but remained
at over 96% when the size grew to four and above. A larger
training set (with more than seven genes) may overfit the

feature, causing difficulty in finding similar targets in the
limited gene pool. A similar result was obtained in a zinc
finger protein (ZFP) family (Table 1).

Searching across gene groups
Using SVMR trained with only ribosomal protein genes,
we searched a pool of another group of genes. Because of
our limitations in time and computational resources, we
made one attempt with a training set of three ribosomal
protein genes (RPS4X, RPS4Y1, and RPL18), two being rel-
atively "flat" in expression variation and one fluctuating
more dramatically. We then formed two separate pools of
targeting genes, one from the ZFP family and another
composed of DEAD box protein genes, which are charac-
terized by the conserved motif Asp-Glu-Ala-Asp. The
results of this search strategy are given in Figure 4 and

SVMR training and searching results in one biological family – ribosomal proteinsFigure 3
SVMR training and searching results in one biological family – ribosomal proteins. Expression pattern (left) and 
genome-wide NPL LOD score distributions (right) of ribosomal protein genes. Group A is the genes selected for the SVMR 
training set. Groups B and C are the genes that were targeted and captured in two separate SVMR searches.
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SVMR searching results across biological familiesFigure 4
SVMR searching results across biological families. Expression pattern (top panel) and genome-wide NPL LOD score 
distribution of genes in training set (three ribosomal protein genes, RPS4X, RPS4Y1, RPS5) and the four captured DEAD box 
genes (DDX39, DDX3Y, DDX58, DDX26).
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Table 1.

Searching using the random walk method
We wanted to be able to discover a relationship directly,
using gene expressions to form a training set and subse-
quently capturing a similar relationship. A random walk
was designed to determine the size and makeup of a train-
ing set randomly and then to search a full set of gene
expression samples randomly. This obviously required
very heavy computational support. Therefore, we ran a
short version of the plan and had a brief view of the ran-
dom search outcome.

We randomly searched in the full set of expression sam-
ples. The total random walk was run in 30,000 rounds
(one round equaled one training set with one set of ran-
domly picked genes for prediction tests that was run once
with each of the three kernels but scored together at the
final stage). The top 1% scored targets were kept as candi-
dates for further estimation of their biological relation-
ships and/or genetic analysis. A randomly formed training

set created a combination of genes with no pre-defined
biological relationships. The expression variation patterns
and linkage results were also different. Sometimes, match-
ing expression data were overthrown by a contradictory
linkage result and/or biological ontology description. This
short version of random walk certainly only covered an
infinitesimal fraction of the entire search space. In the
30,000 random runs, we only encountered one repetition
of the same set of genes picked for the training set (but the
testing set was different). However, we found two sets of
genes, one from the training genes search and another
from the subsequent search of the full set of expression
samples, and each set had its connected regulation path-
ways (Fig. 5 and Table 1). Genes in set B that formed the
training set, C1D (200056_s_at), ALOX5 (204446_s_at),
ENO2 (201313_at), and RERE (200940_s_at), captured
the ones in set A, SCAP1 (205790_at), TGFBR3
(204731_at), SGPP1 (221268_s_at), CD9 (201005_at),
and VAMP8 (202546_at). Interestingly, the five genes in
set A are all linked in the same region on chromosome 2,
but set B doesn't have such characteristics (linkage results

Biological pathways of two groups of genes from "random walk" searchFigure 5
Biological pathways of two groups of genes from "random walk" search. Genes in set B were randomly picked for 
the SVMR training set, and then a random search of the gene pool hit a group of genes that formed set A. The pathway recon-
struction was done using PathwayStudio 4.0 (Ariadne Genomics, Inc.).
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are not shown). How to relate the two sets of genes in
terms of their biological connection or similarity remains
to be further elucidated.

Discussion
The pattern in gene expression variation does contain
information that reflects the underlying genetic architec-
ture. Using statistical learning machines like SVM can
extend the capability to model more complex relation-
ships with which regular statistical models such as regres-
sion may have limitations. In our exploration at four
different searching levels, we noticed that the selection of
genes for the training set, i.e., the definition of a biological
relationship, influences the search results considerably.
Meanwhile, the SNP composition and density, the herita-
bility of expression data as a quantitative trait, and its dis-
tribution mode are major factors affecting both linkage
results and SVMR learning quality.

We suggest that carefully processing expression data may
help manage the data complexity, for example, through
distinguishing heritability level, normality of phenotypic
distribution, age stratification, or partitioning data using a
defined theme to reduce noise level. But adding one or
more dimensions of biological relationship information
into the SVM learning process may increase the searching
power by improving its specificity and sensitivity.

Our brief attempt at using the random walk method sheds
light on the difficulty of discovering gene relationships
directly via expression data. Genes in the same regulatory
pathways share patterns of expression. Therefore, instead
of searching an entire sample space, we plan to focus
future research on adopting more effective search strate-
gies such as those using genetic algorithms or other heu-
ristic search approaches.
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