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Abstract
Assuming multiple loci play a role in regulating the expression level of a single phenotype, we
propose a new approach to identify cis- and trans-acting loci that regulate gene expression. Using
the Problem 1 data set made available for Genetic Analysis Workshop 15 (GAW15), we identified
many expression phenotypes that have significant evidence of association and linkage to one or
more chromosomal regions. In particular, six of ten phenotypes that we found to be regulated by
cis- and trans-acting loci were also mapped by a previous analysis of these data in which a total of
27 phenotypes were identified with expression levels regulated by cis-acting determinants.
However, in general, the p-values associated with these regulators identified in our study were
larger than in their studies, since we had also identified other factors regulating expression. In fact,
we found that most of the gene expression phenotypes are influenced by at least one trans-acting
locus. Our study also shows that much of the observable heritability in the phenotypes could be
explained by simple single-nucleotide polymorphism associations; residual heritability was reduced
and the remaining heritability may represent complex regulation systems with interactions or noise.

Background
Gene expression levels of many genes show natural varia-
tion in humans [1,2]. In an individual, the expression lev-
els of a highly variable gene can be treated as a
'phenotype', possibly influenced by genetic determinants.
Recent studies have shown that expression levels may be

influenced by single-nucleotide polymorphism (SNP)
alleles [1-3]. These mapping efforts have identified quan-
titative trait loci (QTLs) that may be in the gene's own reg-
ulatory regions (cis-acting QTLs) as well as elsewhere in
the genome (trans-acting QTLs) using both linkage [1]
and association analysis [2,3]. For the association analy-
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sis, Stranger et al. [3] examined all possible combinations
of gene expression phenotype/marker genotype combina-
tions, whereas Cheung et al. [2] examined only gene
expression phenotype/genotype combinations under
linkage peaks identified in the study by Morley et al. [1].
Here we take the advantages of these analysis methods
and propose a new analysis strategy for the 3462 gene
expression measurements on members of 14 CEPH Utah
families, provided to participants in Genetic Analysis
Workshop 15 (GAW15), as shown in Figure 1. The main
differences between our method and previous ones are: 1)
we assumed that there may be multiple loci regulating the
expression levels of a single gene and used stepwise regres-
sion analysis to look for additive effects of the SNPs; 2) we
examined the evidence for linkage to residuals of linear
regression analysis adjusting for gender and cis-SNPs,
rather than to raw expression intensities, and 3) we evalu-
ated the changing patterns of expression heritability and
residual heritability.

Methods
Phenotypes and genotypes
Expression levels for 3554 genes, taken from the lymphob-
lastoid cell lines of 194 members of 14 CEPH Utah fami-
lies, were made available for GAW15 [1]. Of these
expression measures, 92 were missing either chromosome
number or start or end of chromosomal location informa-
tion in the Affymetrix annotation table http://www.affyme
trix.com, so we focused on the remaining 3462 gene expres-
sion traits. The genotypes for 2819 autosomal SNPs for the
same individuals were generated by The SNP Consortium
http://snp.cshl.org.

Definition of cis- and trans-acting regulators
cis-Regulatory variants were defined as SNPs either within
a gene, up to 1 Mb proximal to the start of the gene, or up
to 1 Mb distal to the end of the gene. trans-Regulatory pol-
ymorphisms are defined as all SNPs elsewhere in the
genome. Physical locations of probe sets were obtained
from the Affymetrix annotation table http://www.affyme
trix.com. The Rutgers map was used to establish a corre-
spondence between the megabase locations on the physical
map and the genetic map http://compgen.rutgers.edmaps.
Markers that could not be mapped using Rutgers map, but
that were located between physically anchored markers,
were placed on the genetic map by linear interpolation.

Identification of cis- and trans-acting regulators
Three steps were used to identify cis- and trans-regulatory
polymorphisms (See Figure 1). 1) For each probeset, we
first identified SNPs in or close to (1 Mb) the probe set
(cis-SNPs), and then we fit a linear regression model con-
taining gender and the cis-SNPs as covariates. If no cis-
SNPs were identified for the probe set, we used only gen-
der as a covariate; if more than one cis-SNP was identified,

a stepwise algorithm based on the Akaike information cri-
terion (AIC) was applied to choose a predictive set of cis-
SNPs; if no SNPs were kept after running the stepwise
algorithm, we forced in the SNP with the smallest p-value.
The SNPs were coded 0, 1, and 2, representing
homozygous rare, heterozygous, and homozygous com-
mon genotypes, respectively. Within-family dependence
was not modelled, although we did some sensitivity anal-
yses examining the effect of this assumption (see Discus-
sion). We report the nominal, parametric p-values for the
test of no association for each SNP (β = 0). 2) Residuals
were obtained from the previous linear models contain-
ing gender and cis-SNPs (if any). Genome-wide
multipoint linkage analysis was then performed on the
residuals using the MERLIN-REGRESS command in the
statistical genetics software MERLIN [4]. 3) For each of the
gene expression phenotypes, we fit a new linear model to
identify SNPs under the linkage peaks of step (2) (loga-
rithm of the odds (LOD) ≥ 2.0) that influence gene
expression, and also included gender. These were prima-
rily trans-SNPs because the linkage models used residuals
that had already been adjusted for cis-SNPs. We evaluated
which of these SNPs significantly and independently pre-
dicted gene expression phenotype by using the stepwise
procedure with AIC to choose the optimal set of SNPs in
the model.

Heritability estimation
The variance components analysis in MERLIN was used to
estimate heritability based on: 1) raw gene expression pro-
files (H_exp); 2) residuals to a stepwise regression analysis
containing cis-SNPs (if any) and gender (H_cis); 3) resid-
uals to a stepwise regression analysis containing SNPs (if
any) that have LOD of at least 2.0 and gender (H_lod).

Results
We identified 2176 out of 3462 expression phenotypes
where there was at least one cis-SNP. Table 1 (Step 1)
shows the number of expression phenotypes that had cis-
SNPs nearby, and the number that were associated with
the phenotypes. There were 1286 expression phenotypes
without an associated cis-SNP. Of the 2176 phenotypes
with cis-SNPs, the stepwise model chose only one SNP as
associated for 78% (1697 out of 2176) of the phenotypes,
although 81% (1763 out of 2176) of the phenotypes had
more than one nearby SNP. Using a definition of signifi-
cance of p = 0.01, 288 phenotypes were associated with at
least one significant cis-regulator, and of these, 43 pheno-
types were associated with two significant cis-regulators. If
a more stringent significant level, say p = 0.001, is used,
the number of significant cis-SNP drops dramatically
(Table 1).

We then performed linkage analysis using residuals for
the 3462 expression phenotypes derived from the fitted
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association models using the associated cis-SNPs and gen-
der. Morley et al. [1] defined two levels of significance: p =
3.7 × 10-5 (LOD ~ 3.4), and p = 4.3 × 10-7 (LOD ~ 5.3).
Using the same thresholds, we identified 1556 and 337
expression phenotypes with at least one marker showing
evidence for linkage beyond these thresholds, respec-
tively. In comparison, Morley et al. [1] identified 984 and
142 phenotypes, respectively, with at least one region of

linkage at these two levels. We found many expression
phenotypes whose regulation mapped to shared hotspots
on chromosomes 9, 11, 13, 14, and 20.

We then performed a second set of stepwise linear regres-
sion analyses for the expression phenotypes, including gen-
der and SNPs that showed LOD scores ≥ 2.0. There were
3034 of these 3462 phenotypes with at least one linkage

Table 1: Distribution of the number of expression phenotypes with different number of SNPs in the regression models of steps 1 and 3 
of our three-step method

Step No. SNPs 0 1 2 3 4 5 6 7 8 9 ≥10

1 Availablea 1286 413 310 614 417 148 169 59 16 16 14
AICb 1286 1697 350 107 17 3 1 1 0 0 0
p ≤ 0.01c 245 43 0 0 0 0 0 0 0 0
p ≤ 0.001c 88 5 0 0 0 0 0 0 0 0

3 Linkagesd 294 81 76 118 141 102 101 102 110 91 2264
AIC 294 664 362 295 270 236 187 147 127 101 645
p ≤ 0.01c 930 433 188 101 58 38 21 11 11 32
p ≤ 0.001c 572 151 60 25 12 10 3 6 2 2

a"Available" denotes the number of phenotypes with the given number of available cis-SNPs in Step 1.
b"AIC" denotes the number of phenotypes where the given number of SNPs was retained by the stepwise linear regression model.
cThe number of phenotypes among those in the previous line in which the p-values of SNP associated with the phenotypes are less than or equal to 
the given significance level.
d"Linkages" denotes the number of phenotypes linked (LOD > 2.0) to the given number of SNPs.

Flow chart showing the analytical strategies we used to identify cis- and trans-acting regulatorsFigure 1
Flow chart showing the analytical strategies we used to identify cis- and trans-acting regulators.
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peak. Given a p-value threshold of 0.01, we found 930 of
the 3034 phenotypes were significantly associated with one
marker and another 893 phenotypes were significantly
associated with more than one marker. The remaining
1639 phenotypes showed no significant association with
any marker. Again, if a more stringent significance level is
used, the number of identified significant trans-SNPs will
be decreased, but not by as much as in Step 1. Focusing on
the most significant SNP for each phenotype, we found that
1514 (83.0%) expression phenotypes are most strongly
influenced by a trans-acting transcriptional regulator.

Of the 337 phenotypes with at least one LOD score over
Morley's second threshold (LOD ≥ 5.3), 10 (3.0%) were
found to have a cis-acting as well as at least 1 trans-acting
regulator (Table 2), and 6 of these (VAMP8, GSTM1,
GSTM2, IRF5, DDX17, and CHI3L2) were also identified
by Morley et al. [1] (see also Cheung et al. [2], Table 1). It
is also interesting to find 3 (PARP4, GSTM1 and IRF5) of
the 10 phenotypes show copy number variation in
healthy individuals [5], suggesting there is a potential
relationship between gene regulation and copy number
variation. Of the remainder, 95 (28.2%) are influenced by
only one trans-regulator, and other 232 (68.8%) of the
phenotypes show associations with more than one trans-
regulator. As can be seen from Table 2, among the 10 phe-
notypes having strong linkage evidence to both cis-regula-
tors and trans-regulators, some of the most strongly linked
cis-SNPs also show evidence of association in Step 1. For
these 10 phenotypes, we also observed that the variation
explained in the second association analysis (Step 3) is
greatly increased compared with that in the first associa-
tion analysis (Step 1). According to Step 3, between 2 and
8 polymorphisms can the majority of the phenotypic var-

iance; for gene VAMP8 (Table 2), three SNPs explain
99.9% of the variance.

Table 3 shows the distribution of heritability for the 3462
phenotypes which were analyzed in three ways (see Figure
1). It can be seen that residual heritability decreases from
H_exp to H_cis to H_lod, showing that the gene expres-
sion patterns can be partially explained by one or more
SNPs. Nine percent of the raw phenotypes had heritability
over 0.4, whereas only 5.5% of the H_lod residuals had
heritability over 0.4.

Discussion & conclusion
Genetic and environmental factors influence gene expres-
sion through complex pathways. Therefore, useful insight
can be gained by considering jointly the effects of covari-
ates and several SNPs when examining factors influencing
gene expression. We included gender in all models and it
was highly significant in many models (data not shown).
It would also be interesting to include age to examine
more complex genetic relationships. We also performed
linkage analysis on residuals to models containing gender
and cis-SNP effects, rather than performing linkage analy-
sis on raw expression intensities. This approach may
reduce residual variance and hence make it possible to
identify additional factors influencing expression.

We allowed multiple SNPs to be considered for each lin-
ear regression and hence we identified phenotypes that
are associated with several different SNPs in different parts
of the genome. For some genes, a very large proportion of
the variability was explained by a combination of several
SNPs (see Table 2). Often, there may be several nearby
SNPs that all show univariate associations with an expres-

Table 2: Ten phenotypes whose expression level is significantly regulated by both cis- and trans-acting determinants

Cis-Association analysis (Step 1) Linkage analysis of residuals (Step 2) 
– Signals at cis-SNPs

Association analysis under linkage 
peaks (Step 3)

Gene Symbol Location p-value for cis-SNP 
with peak LOD score

Variation 
explained (R2%)

cis-SNP with peak 
LOD score

Peak (cis) LOD 
score

(R2%) No. of SNPs in model

PARP4a 13q11 0.023 3.3 rs735770 6.21 80.2 4
VAMP8b 2p12-p11.2 0.003 1.2 rs1432265 7.8 99.9 3
ITGB1BP1 2p25.2 0.051 2.4 rs1003653 10.56 55.3 5
TPP2 13q32-q33 0.693 0.2 rs1412953 6.01 99.3 3
GSTM2b 1p13.3 0.001 8.9 rs559479 9.22 86.8 4
GSTM1a, b 1p13.3 0.024 7.1 rs15864 6.53 32.3 8
IRF5a, b 7q32 0.606 0.2 rs754386 6.1 98.9 5
DDX17b 22q13.1 0.01 19.3 rs2064088 10.89 70.8 6
CHI3L2b 1p13.3 0.086 10.1 rs1264898 9.48 64.9 2
PEX6 6p21.1 0.004 11.6 rs1537638 7.2 66.7 5

This table shows the result from the cis-SNP association analysis (step 1) that corresponds to the largest cis-LOD score in step 2, as well as the 
total variance explained from step 3, for each of these expression measures.
aRegions of these genes show copy number variation http://projects.tcag.ca/variation/.
bThese genes were also identified by Morley et al. [1] and are shown in Table 1 of Cheung et al. [2].
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sion phenotype. Correlations between these SNPs mean
that, often, only some of these SNPs would be retained by
the stepwise regression – a more parsimonious model can
capture the association in a genomic region. We identified
some of the same cis-controlled phenotypes as Morley et
al. [1] and Cheung et al. [2], but our statistical significance
was reduced relative to theirs. This may be a consequence
of including several SNPs as well as gender in each model,
in conjunction with a small sample size. We did not exam-
ine interactions between SNPs or genes; however, it would
be interesting to model interactions between cis-SNPs in
the regression analysis to explore joint effects. Despite per-
forming linkage on residuals, we sometimes found link-
age to regions near the cis-SNPs, probably due to multi-
marker linkage patterns, incompletely explained by allelic
variability.

Although we used simple linear regression to explore SNP
associations and did not correct for additional familial
dependence in this analysis, we compared our first stage
results with generalized estimating equation (GEE) mod-
els using only the 413 phenotypes where there was exactly
one cis-SNP available. Our regression analysis identified
15 of these phenotypes to have a significant cis-SNP (p ≤
0.01) while the GEE model identified only 10 with one
significant cis-SNP (p ≤ 0.01). Five of these phenotypes
were identified by both methods. By ignoring familial
clustering, we may have p-values that are too small. It
would be worth fitting random effect models or GEE
models to all the data, as well as models that are robust to
non-normal distributions. However, the number of fami-
lies here is quite small and any general conclusions would
be better drawn from a larger sample.

Conceptually, we showed that a sizeable proportion of
the observable heritability could be explained by simple
SNP associations for these lymphoblastoid expression
phenotypes. The 5.5% of the phenotypes where residual
heritability remained over 0.4 may be influenced by com-
plex regulation systems.
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