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Abstract
The restricted partition method (RPM) provides a way to detect qualitative factors (e.g. genotypes,
environmental exposures) associated with variation in quantitative or binary phenotypes, even if
the contribution is predominantly an interaction displaying little or no signal in univariate analyses.
The RPM provides a model (possibly non-linear) of the relationship between the predictor
covariates and the phenotype as well as measures of statistical and clinical significance for the
model.

Blind to the generating model, we used the RPM to screen a data set consisting 1500 unrelated
cases and 2000 unrelated controls from Replicate 1 of the Genetic Analysis Workshop 15 Problem
3 data for genetic and environmental factors contributing to rheumatoid arthritis (RA) risk. Both
univariate and pair-wise analyses were performed using sex, smoking, parental DRB1 HLA
microsatellite alleles, and 9187 single-nucleotide polymorphisms genotypes from across the
genome. With this approach we correctly identified three genetic loci contributing directly to RA
risk, and one quantitative trait locus for the endophenotype IgM level. We did not mistakenly
identify any factors not in the generating model. All the factors we found were detectable with
univariate RPM analyses. We failed to identify two genetic loci modifying the risk of RA. After
breaking the blind, we examined the true modeling factors in the first 50 data replicates and found
that we would not have identified the additional factors as important even had we combined all the
data from the first 50 replicates in a single data set.
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Background
Many diseases important to public health are not due
solely to a single mutation or environmental insult.
Instead, complex interactions among multiple genes and
environmental exposures likely play crucial roles in the
etiology of diverse phenotypes from schizophrenia to
chemotherapy response.

The restricted partition method (RPM) [1] is an algorithm
for identifying qualitative genetic and environmental fac-
tors contributing to quantitative or binary phenotypes,
even if the effects are largely due to an interaction display-
ing little or no signal detectable by univariate analyses
[2,3]. The RPM is a multivariable extension of the "meas-
ured genotype" [4] approach. If variation at a locus (or
combination of loci) contributes to trait variation, differ-
ent multilocus genotypes can be expected to display dif-
ferent trait means (or for binary data, different
proportions of "cases"). In contrast, genotype classes
defined by loci that are not in linkage disequilibrium (LD)
with loci that contribute directly to trait variation would
not be expected to display different mean trait values.

We applied the RPM to the Replicate 1 of the Genetic
Analysis Workshop 15 data, blind to the generating
model, in order to test the utility of the method for
genome-wide association data for a complex trait.

Methods
The RPM merges multivariate genotype and environmen-
tal strata with similar mean trait values (proportions of
cases) until all of the remaining groups have significantly
different means or all the genotypes are merged into a sin-
gle group (indicating that the particular loci are not jointly
correlated to variation in the trait). If distinct subgroups
are found, the proportion of variation attributable to the
partition, R2, is calculated and statistical significance is
evaluated using empirical null distributions generated by
permutations of the data. Details of the RPM can be found
in Culverhouse et al. [1]. Originally designed for quantita-
tive trait data, the RPM has recently been shown to have
good power and the nominal rate of false positives when
used with binary data [5].

We initially restricted our attention to data from a single
replicate (Rep 1). We formed a group of unrelated cases
(N = 1500) by selecting the most severely affected sib. If
both sibs were equally affected, we selected the first sib.
This case sample was compared to the N = 2000 unrelated
controls supplied by the data providers. Potential predic-
tors of phenotype consisted of genotypes from the sparse
SNP map (N = 9187) along with the covariates sex, smok-
ing, and the DRB1 HLA (henceforth "DR") allele inherited
from each parent. This resulted in a total of 9191 predictor
variables.

After these analyses, we broke the blind and performed
secondary analyses on the first 50 replicates to evaluate
the effect of a larger sample or different replicates.

Results
Univariate analyses
Univariate RPM analyses, like multivariate RPM analyses,
evaluate the different genotype cells for differences in
means. Retaining only those factors that resulted in an
RPM model with R2 > 0.005 reduced the 9191 predictors
to a set of 19 SNPs, plus the DR alleles, sex, and smoking.
The permutation p-values for all these factors were < 0.05
after correcting for 10,000 tests. Of the 19 SNPs identified,
the only ones not on chromosome 6 were chromosome
11 SNP 389 and chromosome 18 SNP 269. The list of fac-
tors and their corresponding R2 are listed in Table 1.

For the SNPs on chromosome 6, the sex-averaged genetic
distances from SNP 128 are listed to give an idea of the
recombination rates between the markers. We compared
these results to what would have been obtained by a tra-
ditional χ2 analysis of the data. Except for one SNP, this is
exactly the list of factors that had a Bonferroni corrected χ2

p-value < 0.05 for genotype differences between cases and
controls. The exception is SNP 137 on chromosome 6,
which was barely past the threshold in the χ2 analysis. At
first there appear to be three R2 peaks in this region (SNP
138, 153, and 162). An analysis of LD by Suarez et al. [6]
revealed that SNP 138 was in strong LD with SNP 153, but
that SNP 162 was in equilibrium with SNP 153. This led
us to conclude that there are two distinct factors contrib-
uting to RA risk, located near SNP 153 and 162.

Two-way analyses
Interactions in multivariate RPM analyses are indicated by
increased R2 values over the univariate analyses, decreased
p-values (after correction for the increased number of
tests), and by the structure of the resultant multivariate
model. We do not currently have a formal test for interac-
tions. In part, this is because the main goal of the RPM is
to detect factors contributing to phenotype, even if their
effects are primarily seen in interactions, rather than to
estimate the variance components accurately.

We began our analyses by searching for increases in R2.
Because the R2 in these analyses are estimated from a
highly ascertained data set, they likely overestimate the
proportion of variation explained by these factors in the
whole population.

Combining the DR alleles inherited from the mother and
the father results in the two-factor model with the highest
R2. Individually, these factors each account for approxi-
mately 37% of the trait variation (see Table 1). When ana-
lyzed jointly, this jumps to 56%. The model chosen by the
Page 2 of 6
(page number not for citation purposes)



BMC Proceedings 2007, 1(Suppl 1):S72 http://www.biomedcentral.com/1753-6561/1/S1/S72
RPM is illustrated in Figure 1. The values in the grid indi-
cate the number of subjects in each of the categories,
"Mean" gives the proportion of subjects in each group
who are affected, and "N" gives the total number of indi-
viduals in each group in the final model. The model is
symmetric about the main diagonal, indicating that the
effect of inheriting a risk allele from either parent is
approximately the same. The diagonally banded pattern
indicates that the effects of these two factors are approxi-
mately additive. This suggests that a single-locus geno-
typic analysis would provide approximately the same
information as keeping the parental alleles as two separate
factors. For some later analyses, we followed this
approach.

A similar additive effect is found between sex and smok-
ing (Figure 2). In this case, all four of the cells are found
to be distinctly different from the others by the RPM. By
themselves, sex and smoking account for approximately
5.3% and 2.6% of the trait variation, respectively. Jointly,
they account for 7.8%.

In particular, we note that the modest univariate signals
from chromosome 6 SNP 162, chromosome 11 SNP 389,
and chromosome 18 SNP 269 appear to display roughly

additive effects, suggesting that they are independent con-
tributors to the phenotype (see Table 2). However, no
covariate pair (of the 42,242,645 pairs examined) stood
out as providing a large increase in explained variance
over the sum of the individual variances.

Three-way analyses
Although none of our two-way analyses showed a large
interaction effect, we identified 88 SNPs that were either
individually significant or appeared to slightly increase R2

in combination with another predictor. Using this limited
set of SNPs, along with the covariates sex, smoking, and
DR alleles, we looked for three-way interactions.

The addition of chromosome 6 SNP 153 to the model for
the parental DR alleles did not substantially increase R2

(0.5601 vs. 0.5611). We evaluated the correlation
between haplotypes at these two loci (since haplotypes
were available). We found that in cases, allele 1 at SNP
153 was always on the same haplotype as allele 2 or 3 at
the DR locus, while allele 2 at SNP 153 was on the same
haplotype as allele 1 from the DR locus 98.9% of the time
(χ2 = 2962.3). Only four of the six possible haplotypes
were observed, and one was extremely rare. In controls,
the correlation is similarly high (χ2 = 3990.6). This sug-

Table 1: Univariate RPM results (list of all factors with R2 > 0.005 and p < 0.05)

Chromosome Factor R2 cM (from SNP 128)

6 SNP 128 0.0104 --a

6 SNP 129 0.0138 0.0217
6 SNP 130 0.0138 0.0220
6 SNP 133 0.0053 0.5729
6 SNP 134 0.0153 0.6029
6 SNP 138 0.0170 1.1369
6 SNP 139 0.0170 1.1376
6 SNP 144 0.0052 1.2224
6 SNP 145 0.0084 1.2403
6 SNP 147 0.0070 1.4361
6 SNP 150 0.0062 1.7296
6 SNP 152 0.2098 2.4694
6b SNP 153 0.5163 2.4999
6 SNP 154 0.4580 2.5055
6 SNP 155 0.1073 2.6610
6 SNP 160 0.0094 6.3276
6b SNP 162 0.0330 7.6641

11b SNP 389 0.0295 --

18b SNP 269 0.0070 --
--
-- Sex 0.0537 --
-- Smoking 0.0258 --
-- HLA-DR (father) 0.3718 --
-- HLA-DR (mother) 0.3654 --

a--, Not applicable.
b Markers identified as independent contributors to RA risk. The other SNPs are in LD with one of the footnoted markers but have lower R2.
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gests that chromosome 6 SNP 153 is merely a surrogate
for DR.

In contrast, other factors in combination with DR could
produce a modest increase in R2. The RPM gave evidence
of sex and chromosome 11 SNP 389 being contributing
factors independent of the DR locus. Both increased the
explained variation from 56% to 58%. The model includ-
ing sex and DR resulted in slightly different groups for the
two sexes, suggesting a possible small, non-additive inter-
action.

After we performed these analyses, we combined the two
DR alleles into a single DR genotype, thereby reducing
analyses involving DR by one dimension. Using DR gen-
otypes produced almost identical results as treating the
alleles as separate factors, so we will only present results
from using DR genotypes in Table 3. This table lists the
one-, two-, three-, and four-factor models providing the
highest explained proportion of trait variance.

After the model was known
Once the model was known, we discovered that the fac-
tors we identified from our univariate analyses (see Table
1) were all part of the RA risk model (although the chro-
mosome 11 SNP was indirectly related by being a quanti-
tative trait locus (QTL) for the endophenotype IgM). We
found that we had missed two genetic loci that affected RA

risk, one on chromosome 16 and one on chromosome 8.
We combined the data from 50 replicates (for a total of
75,000 cases and 100,000 controls) to determine if an
increase in sample size would allow these two factors to
be detected. We found that this was not the case. The locus
on chromosome 8 was at the end of the chromosome, 3.5
cM past the last marker, and appears not to be in LD with
the nearest markers. In contrast, the locus on chromo-
some 16 did have a marker within 0.01 cM, but (perhaps
due to the strong ascertainment) the effect was too subtle
to detect even with such a large data set.

Discussion
Two related and appealing properties of the RPM are that
it provides a measure of effect size (R2) in addition to a
measure of statistical significance (p-values) and that it
proposes a model of how the predictive factors affect the
phenotype.

Effect size is related to clinical importance and should be
considered alongside evidence of statistical significance
whenever medical researchers need to decide which sig-
nals should be pursued in further studies. We used R2 in
two ways: i) as a threshold to filter out factors of little clin-
ical interest and ii) as a method to localize a signal. In
practice, the decision of how small an effect of clinical
interest is depends on the phenotype, the researcher, and
funding, and should be made in consultation with a
skilled clinician. In this case, we picked a low threshold,
R2 ≥ 0.005. Because this only identified a small number of
markers of interest, we stayed with that threshold. As a
result, we were able to identify a QTL related to our phe-
notype of interest without picking up any false-positive
signals. In this we were lucky. Our second use of R2 was to
localize a signal within regions of LD on chromosome 6.
Because of the LD, several markers (see Table 1) had per-
mutation-based p-values < 0.05 after Bonferroni correc-
tion. Because of the computational expense of
permutation testing, instead of increasing the number of
permutations by multiple orders of magnitude to distin-
guish between them, we used R2 and LD patterns to iden-
tify the two SNPs most correlated to the causative loci on
chromosome 6.

The value of the modeling of the phenotype was shown in
our examination of the DR alleles. Although these were
presented in the data set as separate maternally and pater-
nally inherited alleles, the RPM model suggested that
parental origin did not make much difference. As a result,
we were able to reduce the dimensionality of some analy-
ses that included DR as a factor.

Drawbacks of using the method to test genome-wide asso-
ciation data for main and interaction effects include the
computational burden of permutation testing, the ad hoc

Model for smoking vs sex. Models approximatelyadditive (R2 = 0.078)Figure 2
Model for smoking vs sex. Models approximatelyad-
ditive (R2 = 0.078). Mean = proportion of affected in each 
genotype group; N = total number of subjects in each geno-
type group.

Smoke Mean (N)

Sex 0 1  0.21 (644)

1 644 688  0.35 (688)

2 971 1191  0.48 (971)

 0.59 (1191)

RPM model for the DR alleles inherited from bothparents (R2 = 0.56)Figure 1
RPM model for the DR alleles inherited from both-
parents (R2 = 0.56). Mean = proportion of affected in each 
genotype group;N = total number of subjects in each geno-
type group.

Mother Mean (N)

Father 1 2 3  0.02  (1178)

1 968 110 476  0.33  (167)

2 100 15 76  0.60  (995)

3 504 91 1160  0.91  (1160)
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choice of what should be considered a significant increase
in explanatory variance when an additional factor is
added to the model, and the problem of multiple testing
correction.

Conclusion
Using the RPM for univariate analyses on a single data
replicate, and blind to the generating model, we were able
to identify four genetic factors that directly contributed to
RA status and one genetic locus that was a QTL for an asso-
ciated endophenotype, IgM. We did not detect any false-
positive signals.

The R2 values provided by the algorithm were useful in
localizing causative loci within regions of LD on chromo-
some 6 and in providing a filtering mechanism to elimi-
nate small effect false positives.

Multilocus analyses were useful in determining that DR,
chromosome 6-SNP 162, chromosome 11-SNP 389, and
chromosome 18-SNP 269 were independent contributors
to RA risk, and that the DR alleles displayed a dose effect,
with no parent-of-origin effect. Because of the extremely
high correlation between DR and chromosome 6-SNP
153 alleles, we failed to deduce that they were associated
to two distinct contributing loci.

Two genetic factors contributing to RA risk were not
detected. One, on the end of chromosome 8, was appar-
ently not in LD with any of the marker SNPs. Even with
knowledge of the generating model, we did not find evi-

dence of either of these factors in an ascertained sample of
75,000 cases and 100,000 controls taken from 50 repli-
cate data sets.
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