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Abstract

The goal of this paper is to search for two-locus combinations that are jointly associated with
rheumatoid arthritis using the data set of Genetic Analysis Workshop |6 Problem |. We use a two-
stage strategy to reduce the computational burden associated with performing an exhaustive two-
locus search across the genome. In the first stage, the full set of 531,689 single-nucleotide
polymorphisms was screened using univariate testing. In the second stage, all pairs made from the
500 single-nucleotide polymorphisms with the lowest p-values from the first stage were evaluated
under each of 17 two-locus models. Our analyses identified a two-locus combination - rs6939589
and rs| 1634386 - that proved to be significantly associated with rheumatoid arthritis under a Rec
Rec model (p-value = 0.045 after adjusting for multiple tests and multiple models).

Background

Although the primary interest of genome-wide associa-
tion studies (GWAS) is to identify single-nucleotide
polymorphisms (SNPs) with detectable marginal effects,
it is also of interest to identify SNPs that have an
interaction effect. Testing all possible pairs of loci to
identify interactions creates many practical difficulties.
In this article, we use a two-stage strategy to search for
two-locus joint effects, which effectively reduces the
computation time. In the first stage, we only selected loci
that met an initial threshold. In the second stage, any
locus that met the first-stage threshold was tested under
each of 17 two-locus joint effect models. By applying this
two-stage analysis to Genetic Analysis Workshop 16

(GAW16) Problem 1, we successfully identified two
SNPs that are jointly associated with rheumatoid
arthritis (RA) and could not be identified by single-
locus analysis.

Methods

Two-locus analysis based on |7 two-locus models

In this article, we propose 17 two-locus models, which
include 8 epistatic models and 9 multiplicative models
(Figure 1).

The 17 two-locus models can be described by the
following log linear model log P(Disease|g) = o + B1X,
where g is the two-locus genotype; for the eight epistatic
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(a) Epistatic models
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(b) Multiplicative models
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Seventeen two-locus models. A and B are the high-risk alleles in the two markers. For the epistatic models, & and 3 are the
penetrances. For the multiplicative models, the symbol in each cell denotes the relative risk of this cell. ¢ = 6%, p = 6°,and y= 6*.

models in which the nine two-locus genotypes can be
divided into high-risk group and low-risk group, X = 1 if
the genotype g belongs to the high-risk group and X = 0
otherwise; for the nine multiplicative models, X = x; + x,,
where x; is the dominant, recessive, or additive coding of
the genotype at the first SNP for a dominant, recessive, or
multiplicative model, respectively, and x, is similarly
defined for the second SNP. For the i individual, let y;
denote the trait value (1 for diseased individual and 0 for
normal individual) and X; denote the numerical code of
the genotype (X in the log linear model). The score test
statistic is given by

N _ B 2
( 2 (Xi=X)(yi-y) ]
T i=1

score — ’

N
V(l—)’).zl(xi—x)
1=

where N is the sample size, X is the average of X, ..., Xy,
and y is the mean of yy, ..., yn. Under null hypothesis of
no association, Ty, asymptotically follows a chi-square
distribution with one degree of freedom (df). Though we
use a unified test statistic Ty, for all of the models, the
17 models correspond to 17 different tests. Different
models correspond to different genotype coding, and
thus different values of X; in Ty.,. For example, under
Rec N Rec epistatic model, X = 1 if the two-locus
genotype is AABB; X = 0 otherwise; under Recx Rec
multiplicative model, X = x; + x,, where x; = 1 if the
genotype at the first SNP is AA and x; = 0 otherwise; x, is
similarly defined for the second SNP.

The method to search for significant two-locus combina-
tions for each of the 17 models has the following two
steps. In the first step, three one-df chi-square tests
(corresponding to dominant, recessive, and additive
models) are used to test for association at each SNP.
For a SNP, let P denote the smallest p-value of the three
tests. We select M SNPs with the smallest P (M = 500 was
used in this study). In the second step, under each of the
17 two-locus models, we apply a two-locus association
test Ty.or to each of the L two-locus combinations among
the M selected SNPs, where L = M(M - 1)/2. In this step,
we get a p-value (called raw p-value) for each of the L
two-locus combinations and each of the 17 two-locus
models.

Let p; denote the raw p-value of the I"two-locus
combination under the j" two-locus model. A permuta-
tion procedure is then used to adjust for multiple tests
and multiple models. For each permutation, we
randomly shuffle the case and control status. Based on
the permuted data, we redo the single-marker test for
each SNP, select M SNPs with the smallest p-values, and
then test each of the two-locus combinations among the
M selected SNPs under each of the 17 models. For the k™
permutation, let pl’;- denote the p-value of the two-locus
test for the I™ two-locus combinations under the j"
model and let pk. = minlSlSLrlst”{p,’;}. Suppose that
we perform the permutation K times (we use K = 1000 in
this study). Then, the overall p-value of the two-locus test
for the I two-locus combination under the j'™ model is

Lk .
given by p = #{k'pmin<pl]} . In this way, we can adjust
/A
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for multiple testing for L two-locus tests and 17 models
and we also can adjust for the fact that the M SNPs to do
two-locus analysis were chosen as the “top” signals from
a much larger set.

Control for population stratification

The two-locus analysis discussed in the last section is
valid under the assumption that all sampled individuals
come from a homogeneous population. Thus, we first
check this assumption in the data set of GAW16 Problem
1. For this purpose, we randomly choose 1000 SNPs and
perform association test at each of the 1000 SNPs using
the one-df chi-square test. The histogram of the p-values
of the 1000 tests is given in Figure 2a. If all sampled
individuals come from a homogeneous population, the
1000 p-values should follow a uniform distribution.
Figure 2a shows that the data set of GAW16 Problem 1
has the problem of population stratification. To control
for population stratification, we propose to use the
following two methods:

1. Genome Control (GC) method: the GC method
[1,2] rescales the chi-square test statistic. Suppose
that we have N one-df chi-square tests (single-marker
test or two-locus test) with test statistics Ty, T5, ..., Tn.
The GC method rescales T; as §; = Ti (i=1,2,..,N),
where b = median {T,, T, ..., Tn}/0.465 and considers
S; following a chi-square distribution with one df.

2. Permutation GC method: Suppose that we have N
one-df chi-square tests and rescale the test statistics as
S1, Sy, ..., Sy by the GC method. Then, we carry out
permutation K times. For each permutation, we
perform N chi-square tests based on the permuted
data and rescale the test statistics by GC method. For
the k" permutation, let T, T, .. Tk denote the chi-
square test statistics. We rescale them as s*, sk, sk

http://www.biomedcentral.com/1753-6561/3/S7/S26

by GC method. Then, the p-value of the i test is
given by p, =;¢;t{k;sfZ >S;}/ K-

To test whether the two methods can control for
population stratification, we randomly chose 1000
SNPs from the data set of GAW16 Problem 1. The GC
and permutation GC methods were used to test
association for the 1000 SNPs. The histograms of the
p-values from the two methods are shown in Figure 2, b
and c. These two panels show that the distributions of
the p-values are very similar to a uniform distribution,
which indicates that both the GC and permutation GC
methods can control for population stratification, at
least for the data set of GAW16 Problem 1.

Results

The GAW16 Problem 1 data set contains genotypes at
531,690 SNPs on chromosomes 1-22 (868 cases and
1194 controls). We first performed single-marker analy-
sis. Three one-df chi-square tests (corresponding to
dominant, recessive, and additive models) rescaled by
GC method were applied to each SNP. The smallest
p-value of the three tests at each SNP was adjusted by
Bonferroni correction for the three models and all the
SNPs. From the single-marker analysis, we found one
SNP (rs2476601) on chromosome 1 and 183 SNPs on
chromosome 6 with adjusted p-values less than 0.05
after Bonferroni correction. The 183 SNPs that we found
on chromosome 6 are in a region (29930240 to
33149012 bp) in high linkage disequilibrium with
HLA-DRBI, a factor known to have a strong association
with RA [3-6]. The SNP (1s2476601) on chromosome 1
is in the hematopoietic-specific protein tyrosine phos-
phatase gene, PTPN22, which has been identified to be
associated with RA [6,7].

(a) Chi-square test (b) GC method (c) Permutation GC method
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Figure 2

Histograms of the p-values of the three tests.
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We used the permutation GC method with 1000
permutations to carry out the two-locus analysis. In the
analysis, we excluded SNPs within 10 Mbp of any of the
SNPs surviving Bonferroni correction from the single-
marker analysis. Then, we performed the two-stage, two-
locus analysis among the remaining SNPs. For each pair
of SNPs, individuals with missing genotypes at either
locus were not included in that analysis. After adjusting
for multiple tests and multiple SNPs, we found one two-
locus combination - 1s6939589 on chromosome 6 and
rs11634386 on chromosome 15 - significantly associated
with RA. The two-locus combination followed the Rec x
Rec multiplicative model with a p-value of 0.045.

Discussion

Although there is growing appreciation that searching for
epistatic interactions in humans may be a fruitful
endeavor, there are still a number of practical difficulties
associated with testing all possible pair-wise compar-
isons in the case of GWAS, such as data storage
requirements, computation time, and multiple testing.
In this report we used a computationally efficient two-
stage analysis to search for joint effects of genes for
GAW16 Problem 1. Applying this strategy to GAW16
Problem 1, we have successfully identified two loci that
are significantly associated with RA. These two loci
would not have been identified as significant by single-
marker analysis after correction for multiple tests.

Computational efficiency has imposed limits on our
two-stage strategy. Because our approach only searches
two-locus interaction among the top M SNPs according
to the marginal effects, the loci with strong interaction
effects but weak marginal effects may not be detected.
Furthermore, our approach only considers 17 interaction
patterns (corresponding to the 17 two-locus models).
The proposed two-stage strategy may have low power to
detect interactions whose patterns depart from the 17
two-locus models.

Conclusion

Our two-locus analysis showed that a two-locus combi-
nation, 1$6939589 and rs11634386, is significantly
associated with RA.
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