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Abstract

We propose the use of latent growth curve model to assess the influence of genetic,
environmental, demographic, and lifestyle factors on multiple phenotypes related to coronary
heart disease. We model four quantitative traits (systolic blood pressure, high-density lipoprotein,
low-density lipoprotein, and triglycerides) simultaneously in a multivariate framework that allows
us to study their change over time, assess individual variation, and investigate cross-phenotype
relationships. Environmental, demographic, and lifestyle covariates are included at different levels of
the model as time-varying or time-invariant, as appropriate. To investigate the change over time
attributed to genetic factors, we use candidate markers that have previously been shown to be
associated with the quantitative traits. We illustrate our approach using independent observations
from the offspring cohort of the Framingham Heart Study data.

Background
Numerous studies have identified environmental, demo-
graphic, and genetic factors that increase the risk of
coronary heart disease (CHD). A notable major study
that led to the identification of several risk factors for
heart disease is the Framingham Heart Study (FHS),
which began in 1948. The study provides measurements

of major risk factors such as blood pressure and lipid
levels taken over a long period of time, offering the
opportunity to model developmental trajectories. Very
recently, FHS genotyped individuals, which permits
researchers to perform genome-wide association and/or
linkage analyses to identify potential genetic factors that
may influence the development of CHD.
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Environmental and genetic variables influencing auanti-
tative traits related to CHD such as systolic blood
pressure have been studied extensively. Methods ranging
from simple regression to more complicated multilevel
models have been used to model the longitudinal
aspects of blood pressure and other quantitative traits
of interest [1]. However, few studies looked at more than
one phenotype simultaneously, and cross-phenotype
relationships are not often investigated. In this paper,
we consider longitudinal measurements taken from four
different phenotypes known to be associated with CHD,
namely: systolic blood pressure (SBP), low-density
lipoprotein (LDL), high-density lipoprotein (HDL),
and triglycerides (TG). We propose the use of latent
growth curve (LGC) to simultaneously model these
quantitative traits in a multivariate framework that
allows us to investigate cross-phenotype correlations as
well as to study the effect of environmental, genetic, and
other covariates on the change of these phenotypes over
time.

Methods
Data description
We included data from the FHS offspring cohort
provided by Genetic Analysis Workshop 16 (GAW16).
We restricted our analysis to independent members of
the offspring cohort, which were selected as follows.
Starting with the original 1538 families, the Generation
3 cohort was removed, which split the pedigrees into
3379 independent sub-pedigrees. The maximal set of
independent samples was obtained, among the samples
that belonged to the offspring cohort, consented to have
their phenotype data used, and had genotype data,
which resulted in 1488 individuals. An additional 171
samples without family data were added for a total of
1659 independent (kinship coefficient = 0) individuals.
Among them, 221 individuals had one or more element
of missing genotype information and were excluded. We
considered time-varying covariates: smoking, hyperten-
sion, and cholesterol treatments. Other variables related
to CHD including age, sex, body mass index (BMI), and
diabetes status were included in the analysis as time-

invariant covariates. Selected markers that have been
previously identified to be linked and/or associated with
the traits are included in the model to account for genetic
contribution. The authors have adhered to the data use
agreement for FHS data and this agreement has been
reviewed and approved by the Research Ethics Board at
the Research Institute, The Hospital for Sick Children,
Toronto, Canada.

Marker selection
For the lipid traits, eight markers were selected from
genes or gene regions that showed evidence for associa-
tion with lipoprotein or lipid concentrations and were
confirmed in a meta-analysis [2]. Two of these eight
markers were not present in either the 500 k or 50 k
marker sets, and were also not in strong linkage
disequilibrium with any marker. Marker rs11591147
(chromosome 1, in PCSK9) was replaced with
rs11206510. Marker rs4420638 (chromosome 19, in
the APOE-C1-C4-C2 gene cluster), which showed a
weaker association in Willer et al. [3], was replaced
with rs10402771. Similarly, rs1800775 was replaced
with rs1150802. No genome-wide study has shown
evidence of significant association with either blood
pressure or hypertension. However, we include two
markers with the smallest p-values from a genotypic test
in the Wellcome Trust Case-Control Study [4]. Informa-
tion about the markers is provided in Table 1.

LGC model
LGC modelling is used to study the effect of genetic and
environmental factors on the change of SBP, HDL, LDL,
and TG over time. One of the strengths of LGC
modelling is that it allows us to study multiple outcomes
over time in a multivariate framework, which is
particularly useful in investigating the change in the
levels of phenotypes simultaneously and assessing cross-
phenotype relationships.

Suppose ypit is a measurement taken from individual i in
pedigree p at exam t, where i = 1, 2, ..., np, p = 1, 2, ..., k,

Table 1: Selected markers known to be associated with cardiovascular-related traits

Marker Chromosome Position (bp) Nearest gene Associated trait

rs11206510 1 55,268,627 PCSK9 LDL
rs2820037 1 237,503,165 CHRM3 SBP
rs693 2 21,085,700 APOB LDL, TG
rs328 8 19,864,004 LPL HDL, TG
rs3890182 9 106,687,476 ABCA1 HDL
rs28927680 11 16,124,283 APOA1 cluster HDL, TG
rs1800588 15 56,510,967 LIPC HDL
rs2398162 15 94,631,554 NR2F2 SBP
rs1150802 16 55,552,737 CETP HDL
rs10402271 19 50,021,054 APOE cluster LDL
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t = 1, 2, ..., q, then the general growth curve model is
described as,

y x vpit pi t pi pt pit pit= + + +α β γ ζ (1)
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where api and bpi are the intercept and the slope [5]. Time-
varying covariates such as vpit are included in the model at
individual level as in Eq. (1), whereas time-invariant
covariates such as wpi enter the model through the growth
parameters (intercept and slope) as in Eq. (2). Covariates
affecting the phenotypes at the pedigree level such as zp are
included at the family (or pedigree) level as in Eq. (3). In
our case, the measurements corresponding to y are SBP,
HDL, LDL, and TG, and these four phenotypes are
modelled simultaneously as parallel processes. Moreover,
we do not have pedigree level parameters ap and bp

because we considered unrelated individuals. We analyzed
data using Mplus statistical software [6].

Results
The path diagram given in Figure 1 describes the growth
curve used in modeling the longitudinal measurements
of SBP, HDL, LDL, and TG. Paths with one arrow
represent casual relationships, whereas those with two
arrows indicate correlations between the traits involved.
For simplicity, we have not included all cross-trait
relationships in the diagram; however, the results are
provided in Tables 2 and 3. Considerable amount of
variation in the intercepts are explained by the time-
invariant variables sex, age, baseline BMI, and diabetes
status (Table 2). For SBP and HDL, 35.6% and 33.6% of
the variations in the intercepts, respectively, are
explained by these covariates (Table 2). However, a
significant amount of the variations (64.5%, p-value <
0.0001 and 66.4%, p-value <0.0001, for SBP and HDL,
respectively) have not been accounted for. On the other
hand, only a small amount of the variation in the slopes
is explained by the time invariant covariates, where the
largest explained variance is for LDL slopes (24.0%).

Figure 1
Path diagram describing growth curve modeling of longitudinal measurements of SBP, HDL, LDL, and TG
taken at exams 1, 3, 5, and 7. The environmental and demographic covariates given on both sides of the path diagram
represent the time invariant covariates sex, age, baseline BMI, and diabetes status. Genetic covariates represent the ten
selected markers. The numbers on the lines connecting these covariates with the intercepts and slopes are percentages of
explained variation and correlations. Paths with one arrow indicate causal relationships whereas those with two show
correlations. The boxes contain tn values representing time-varying covariates hypertensive and cholesterol treatments as well
as number of cigarettes smoked.
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For the genetic factors, the results from our analysis are
in agreement with previous association findings indi-
cated in Table 1. We found strong associations between
HDL and markers rs28927680 (p-value < 0.0001),
rs1800588 (p-value = 0.002), and rs1150802 (p-value <
0.0001) (through the slope). A weak association
between HDL slope and marker rs328 was also observed.
Markers rs693 and rs10402271 are shown to be strongly
associated with the intercept of LDL (both with p-value <
0.0001), whereas marker rs11206510 showed a weak
association (p-value = 0.026). Markers rs28927680 and
rs328 are also shown to be strongly associated with the
intercept and slope of TG, respectively. For blood
pressure, no marker was associated with the intercept
of the model; however, a strong association between
marker rs1800588 and SBP slope was found (p-value =
0.001). This marker is previously liked to HDL [2], but
there has not been any study that linked the marker with
SBP. It is important to note that markers rs2820037 and

rs2398162, with smallest p-values from a genotypic test
(for SBP) in the Wellcome Trust Case-Control Study [4],
did not show any association in our data.

In general, a small amount of variation for all the
quantitative traits is attributed to the genetic covariates,
where the largest explained variation (3.9%) was for the
intercept of HDL (Table 2). The variation in the latent
variables explained by the combined model with both
the environmental and genetic factors is shown in Table
2. It can be seen that 37.1% of the variation in the slope
of HDL is explained by the model; however, a significant
amount (86 out of the total 136.93, p-value < 0.0001) is
left unexplained. Further analysis with more environ-
mental and genetic factors is needed to explain this
variation. Moreover, the slope and/or intercept of one or
more of the phenotypes could be included as a covariate
in the analysis to account for a possible casual
dependence between the phenotypes. We plan to

Table 2: Estimated variance for the latent variables and percentage of variation explained by the time-invariant covariates, genetic
covariates, and the combined model

% Variance explained by

Mean Estimated variance Environmental factors Genetic factors Combined model

HDL
Intercept 52.020 136.926 33.6 3.9 37.5
Slope 0.284 7.860 16.1 3.5 19.6

LDL
Intercept 125.238 926.508 23.1 3.3 26.7
Slope 1.473 58.518 24.0 0.2 24.0

TG
Intercept 71.989 3258.821 16.0 18.0 2.1
Slope 22.294 643.769 5.5 7.9 2.0

SBP
Intercept 119.696 130.198 35.6 0.009 36.3
Slope 2.601 18.524 9.4 0.028 11.8

Table 3: Correlations explained by environmental and genetic covariates.a

HDL LDL TRG SBP

Intercept Slope Intercept Slope Intercept Slope Intercept Slope

HDL
Intercept 1.000 0.094 <0.0001 0.003 <0.0001 0.021 0.018 0.001
Slope 0.142 1.000 0.483 <0.0001 0.549 <0.0001 <0.0001 0.058

LDL
Intercept -0.245b 0.040 1.000 <0.0001 <0.0001 0.221 0.961 0.253
Slope 0.159 0.527 -0.285 1.000 0.001 0.001 0.825 0.017

TRG
Intercept -0.318 -0.031 0.176 -0.179 1.000 <0.0001 <0.0001 0.139
Slope -0.094 -0.608 0.049 0.204 -0.225 1.000 0.569 0.008

SBP
Intercept 0.101 -0.258 0.002 -0.012 0.156 0.024 1.000 0.020
Slope -0.163 0.138 0.055 0.158 -0.067 0.134 -0.163 1.000

aValues above diagonal are the corresponding p-values.
bBold font indicates significance at a = 0.005.
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consider these analyses in future studies. Here we only
investigated the cross-phenotype relationships via corre-
lations. Model estimated correlations for the latent
variables are given in Figure 1 using curved, double-
arrow lines. Table 3 shows the correlation (along with
p-values) explained by the environmental and genetic
covariates. The residual correlations (data not shown)
show that a significant percent of the correlations are not
explained by the model, indicating that there are other
common factors affecting these phenotypes simulta-
neously.

Discussion
Our results show that a significant amount of the variations
in the intercepts of the traits are explained by environ-
mental and demographic factors. Moreover, the results
identified markers that have been previously associated
with the traits. We also found a novel association between
marker rs1800588 and SBP. In general, however, only a
small percent of the variations in the traits were attributed
to the genetic factors.

In our LGC modelling, we considered unrelated indivi-
duals (with kinship coefficient = 0) from the offspring
cohort of the FHS data. However, one might be interested
to know how the intercepts and slopes vary not only at the
individual level but also at the family level. Therefore, it is
important to use models that take the correlation among
family members into account. This will also allow us to
explain some of the residual variances and correlations.
One can use two approaches in dealing with this challenge
1) adjust for the dependency when the familial correlation
is considered as a nuisance parameter and standard errors
and goodness-of-fit statistics are estimated using the
sandwich estimator or 2) use a two-level LGC model that
allows modelling not only average change in the values of
the phenotypes over time but also allows us to assess how
the these changes vary between individuals in the same
family and between families. We plan to address these
issues in subsequent studies.
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