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Abstract

As genetic maps become more highly dense, the ability to sufficiently localize putative disease loci becomes an
achievable goal. This has prompted an increased interest in methods for constructing confidence intervals for the
location of variants that contribute to a trait. Such intervals are important because, by reducing the number of
candidate loci, they can help in the design of cost-effective and time-efficient follow-up studies. We introduce a
new approach that can be used in whole-genome scans to obtain a confidence set of loci that contribute at least
a predetermined percentage h to the overall genetic variation of a quantitative phenotype. The method is
developed in the framework of generalized linear mixed models and can accommodate families of arbitrary size
and structure. We apply our method to the Genetic Analysis Workshop 17 simulated data where we scan
chromosomes 6, 15, 20, 21, and 22 to uncover loci regulating the simulated phenotype Q2. For the analyses we
had prior knowledge of the simulation model used to generate the phenotype.

Background

Technological advances have provided us with highly
dense genetic maps of single-nucleotide polymorphisms
(SNPs) covering the whole genome. Based on these maps
and using a variety of statistical methods, scientists nowa-
days routinely scan the human genome in search of loci
that either contribute to the variability of quantitative
phenotypes or predispose individuals to develop binary
traits. Currently used approaches have been particularly
successful in identifying mutations in genes that cause
relatively rare hereditary diseases. However, the search
for susceptibility genes for common diseases has proved
to be more challenging. It is widely accepted that such
complex traits are influenced by many loci, each having
only a small contribution to the phenotype. Naturally,
the detection of these genes is difficult. Furthermore,
investigators must adjust for multiplicity of the large
number of markers simultaneously tested. This is not a
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trivial task considering the complex dependencies in
genetic data. As such, most genome-wide association stu-
dies suffer from low power and often point to large geno-
mic regions. Identifying the genes in these regions and
locating those associated with the trait of interest can be
both time-consuming and expensive. Hence there is an
increased interest in methods that can significantly
reduce the number of candidate genes identified but that
have sufficient power, in the preliminary scan, to aid in
the design of more cost-effective and time-efficient
follow-up studies.

We propose a new confidence set inference (CSI)
method that is motivated by the fact that, because the new
genetic maps are highly dense, it is expected that many
SNPs will not only reside within disease genes but also
may be the causative variants themselves. Our approach
can be used in preliminary genome association studies to
obtain a confidence set (CS) of quantitative trait loci
(QTLs) contributing at least a predetermined percentage
h to the overall genetic variation of a quantitative pheno-
type. The method is developed in the framework of linear
mixed models (LMMs) and can accommodate families of
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arbitrary size and structure. Furthermore, the approach
provides a flexible framework that allows one to search for
loci that have at least a specific level of contribution to the
quantitative trait. As such, it gives us the ability to set the
bar higher or lower depending on the amount of data
available.

Methods
Hypotheses and test statistic
In traditional family-based association mapping the null
hypothesis is that there is no association, whereas the
alternative is that there is association. In our formula-
tion we are actually reversing these two hypotheses. For
each SNP on the map, our null hypothesis is that the
locus is a QTL contributing at least a certain percentage
of the total genetic variance (G(Z;T) of the quantitative
phenotype, whereas the alternative is that the locus con-
tributes to the trait less than the prespecified level (or
nothing at all). More specifically, we assume that there
is a dense SNP map consisting of S markers that poten-
tially harbor some QTLs which contribute to the pheno-
type of interest. Then, for each SNP s (s = 1, ..., S) we
test the following hypotheses:
H,, :0(2;5 > hcrér vs. H, :créj < haér, (1)

where o is the genetic variance attributed to SNP s
and % is a number between 0 and 1 and is chosen in
advance. It follows that the set of markers for which the
null hypothesis in Eq. (1) is not rejected at level & con-
stitutes a (1 — o) x 100% confidence set of loci contri-
buting at least # x 100% to the total genetic variance of
the phenotype.

Note that because of the reversal of the traditional
null and alternative hypotheses, the type I error and
power of our method are also the reversals of the tradi-
tional ones. To avoid any confusion, in the rest of this
paper we use the term true positive to refer to any SNP
that is included in the confidence set and is a trait-regu-
lating locus. Similarly, we use the term false positive to
denote any SNP that is included in the confidence set
and does not contribute to the trait.

We briefly describe how we test the hypotheses in
Eq. (1). Consider a pedigree of arbitrary structure consist-
ing of n members. Let y = (yy, ..., ¥,) be the vector of
family phenotypic values of the trait of interest. We
assume that for each person i the value of his/her pheno-
type is governed by a major locus 7. Furthermore, the trait
value is also influenced (potentially) by some known cov-
ariates X; (e.g., age and sex), which includes a constant of
1 to signify the overall effect. In addition, there is some
environmental effect or residual, denoted e;. Finally, we
assume that the phenotype is affected by a number of
other loci whose collective (random) polygenic effect on
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the trait is denoted u;. Now, assuming additivity across all
effects, the overall phenotypic value of a person is:

vi=BX;+yz, +u; +e, 2

where B is a vector of unknown coefficients, y is the
coefficient of the effect of the major locus, and z, is the
number of copies of the disease allele at the major trait
locus carried by the individual. We assume that the vec-
tor of random polygenic effects u = (uy, ..., u,) follows a
multivariate normal distribution with mean 0 and covar-
iance matrix (2, that the e; are independent and identi-
cally distributed from a normal distribution, also with
mean 0 and variance ¢?, and that the two random
effects are independent of each other and the covariates.
Under these assumptions, the joint distribution of the y;
is simply a multivariate normal distribution with mean
equal to BX + ¥z, and variance covariance matrix:

V,=Q+c/l, (3)

where X7 = (X,, ..
matrix.

If the dominance genetic variance is negligible and
there is minimal or no inbreeding in the family, then
the matrix Q is approximately equal to:

.» X,;) and [ is the n x n identity

Q=z¢a;, (4)

where @ is a known matrix whose elements are the
kinship coefficients between the family members and
Gfp is the additive polygenic variance [1,2]. If we
further assume that the major trait locus 7 is diallelic
with minor allele frequency p,, then we can show that
the coefficient y in Eq. (2) must satisfy:

Oy

7/ =—T’ (5)
[Zpr (1 — P )]1/2

where o ; is the additive genetic variance due to the
major locus 7 and p, is the frequency of the disease
allele. Using this fact, we can see that the hypotheses in
Eq. (1) are equivalent to:

h 1/2 h 1/2
Hp iy, 20, ———— s. Hly:y,<0,| ———— 6
o= [m(lm)} A s [zps(lfps)} ©)
where & 5 is the total additive genetic variance of the

quantitative trait, p; is the frequency of the minor allele
of the SNP s, and 7 is the same coefficient as in Eq. (2)
when s is the major trait locus. The statistic for testing
the above hypotheses is given by:
. 1/2
¢ =)/S—Ga[h/2p5(1—ps)] (7)
) SD(75)
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where y, and SD(y,) are the maximum-likelihood
estimate of 7, and its standard deviation, respectively,
obtained by maximizing the multivariate normal likeli-
hood that corresponds to the LMM in Eq. (2). It is
easily seen that the (asymptotic) distribution of the test
statistic is a standard normal distribution. Thus we can
easily find an appropriate threshold for testing the
hypotheses in Eq. (6) at any significance level a.

Finally, the last piece of information we need to per-
form the hypothesis test is the value of the overall total
additive genetic variance of the phenotype & 3 This can
be readily estimated from the data themselves, usually
with good accuracy, by maximizing a similar likelihood
as in Eq. (2) but without any major gene effects [1,2].

The construction of the confidence set of SNPs that
contribute at least a specific proportion % to the total
genetic variance of a quantitative trait is achieved as fol-
lows. First, we obtain an estimate &2 of the overall
genetic variance by fitting the model in Eq. (2) without
any effects of major genes, that is, without the parameter
7. Next, for each SNP s, we obtain the maximum-likeli-
hood estimate of ¥, and its standard deviation, 7, and
SD(y,) , respectively, by maximizing the likelihood in Eq.
(2). Then, for each SNP s, we use i, 62, 7, and SD(y,)
to compute the test statistic £, Finally, a (1 - ) x 100%
confidence set of loci contributing at least # x 100% to
the total genetic variance of the phenotype confidence set
is formed by aggregating all those SNPs for which ||
>z,, where z,, is the upper oth percentile of the standard
normal.

Results

We used the family simulated data sets from Genetic
Analysis Workshop 17 (GAW17) [3] in an attempt to
localize loci that are related to the simulated quantita-
tive phenotype Q2. Under the simulation model, 72
SNPs contribute to the levels of the quantitative pheno-
type. Because of time limits, we chose to analyze chro-
mosomes 6, 15, 20, 21, and 22 for all 200 replicates
provided in the simulated data. We selected chromo-
some 6 because it houses nine SNPs that contribute to
the phenotype, and thus it can help us gauge the ability
of our method to identify loci contributing to the trait.
Chromosomes 15, 20, 21, and 22 harbor no loci regulat-
ing the trait, and they are used to study the false discov-
ery rate (FDR) of the method. We preprocessed the data
and excluded from the analysis SNPs with a minor allele
count less than 28 copies in the entire data set (roughly
minor allele frequencies [MAFs] of 4%, 2%, 1.5%, and
1% for the single, double, triple, and quadruple data set,
respectively) in order to avoid potential problems with
unstable estimates of the model parameters in Eq. (2)
for SNPs with rare minor alleles. Because we analyzed
only the simulated data, we did not consider any
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filtering criterion that was based on the genotyping rate,
calling rate, or Hardy-Weinberg equilibrium. After pre-
processing the data, we were left with 351 SNPs on
chromosome 6, 189 SNPs on chromosome 15, 137
SNPs on chromosome 20, 51 SNPs on chromosome 21,
and 99 SNPs on chromosome 22. Furthermore, only
three causative SNPs (C6S5380 on the VNNI gene and
C6S5426 and C6S5441 on the VNN3 gene) remained on
the reduced map out of the nine SNPs that reside on
chromosome 6.

Each of the 200 replicates of the family data consists of
genotypes and phenotypes on 697 individuals forming 8
extended pedigrees with the number of members ranging
from 73 to 128. This sample size may not be sufficient to
provide enough power for our method to significantly
localize the loci that contribute to the trait. Thus we
decided to artificially increase the sample size by combin-
ing data from 2, 3, or 4 consecutive replicates to create
100, 66, and 50 new replicates of samples with 1,394,
2,091, and 2,788 individuals, respectively. Note that the
replicates are not completely independent because they
share the same genotypes. This could potentially affect
the performance of the method. However, the indepen-
dence of the phenotypes should help to moderate the
effect of the common genotypes.

Using our method and these new data sets as well as
the original 200 replicates, we constructed 95% confi-
dence sets for loci that contribute a specific percentage 4
to the overall additive genetic variance. The model we
used to analyze the data assumed only the additive
genetic variance component and only one covariate, the
overall mean level of Q2. Even though additional covari-
ates, such as age, sex, and smoking status, were available,
a small preliminary analysis on several replicates showed
that none of the covariates were statistically significant.
Hence we opted to avoid including them in this particu-
lar study to ease the computational burden. Finally, even
though the family sizes were significantly large, 75 to 128
individuals per family, our method was able to handle all
the pedigrees as a whole without splitting them into
smaller units.

In Table 1 we summarize the results from the analyses
of all replicates for the four different sample sizes. For
each data set and each threshold %, we report the true dis-
covery rate (TDR) (the proportion of replicates that yield
95% confidence sets that include at least one SNP that
contributes to the trait) and the FDR (the proportion of
replicates for which the resulting 95% confidence set
includes only nonfunctional SNPs). The last four columns
of the table report the mean and standard deviation of the
number of causative (true-positive) and noncausative
(false-positives) SNPs that were included in the 95% confi-
dence sets and that were based on all those replicates that
yielded nonempty confidence sets. For each data set, we
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Table 1 Analysis results for the 95% confidence sets of loci contributing to the quantitative phenotype Q2

Causative SNPs® Noncausative SNPs

Data set® hP TDR® FDR? Mean SD Mean SD
Single (697) 0.176 0.025 (0.020) 0.050 033 0.13 140 049
0.250 0.000 (0.000) 0.000 0.00 0.00 0.00 0.00
Double (1,394) 0092 0 (0.160) 0.050 0.83 0.10 030 0.15
0.120 0.040 (0.040) 0.000 1.00 0.00 0.00 0.00
Triple (2,091) 0.058 0697 (0.515) 0.045 118 0.08 041 0.14
0.086 0.076 (0.076) 0.000 1.00 0.00 0.00 0.00
Quadruple (2,788) 0.045 0.860 (0.640) 0.040 136 0.09 044 0.16
0.060 0540 (0.520) 0.000 107 005 0.04 0.04

The results are based on 200 single, 100 double, 66 triple, and 50 quadruple replicates.

@ Number of original replicates combined to form the new data set to be analyzed. The number in parentheses corresponds to the number of individuals in the

sample.

P Threshold for contribution of a putative locus to the total additive genetic variance.
 Proportion of replicates for which the resulting 95% confidence set includes at least one trait locus. Numbers in parentheses give the proportion of replicates

for which the resulting confidence sets include only trait loci.

9 Proportion of replicates for which the resulting 95% confidence set includes only noncausative SNPs.
€ Observed mean and standard deviation (SD) of the number of causative SNPs included in the resulting 95% confidence sets per replicate.

f Observed mean and standard deviation (SD) of the number of non-causative SNPs included in the resulting 95% confidence sets per replicate.

present the results for two different thresholds of /. The
first threshold corresponds to the smallest level for which
the method yielded an FDR as close to 0.05 as possible,
without exceeding it; the second threshold is the mini-
mum threshold for which the method yielded zero FDR.
For instance, for the triple data set (2,091 individuals) we
chose the thresholds 0.058 and 0.086 because 0.058
resulted in confidence sets that had no functional SNPs in
3 out of the 66 replicates (FDR of 0.045) and because
0.086 resulted in confidence sets that had only causative
loci.

As expected, a sample size of 697 (single) or 1,394
(double) was not enough for our method to be able to
distinguish between causative and noncausative SNPs.
To bring the FDR to zero levels, we had to set % to 0.25
for the single replicate and 0.12 for the double replicate.
These high thresholds, though, caused the TDR to
become almost zero.

However, when the sample size was tripled to 2,091
people, the advantages of our method started to unfold.
An & of 0.058 was sufficient to hold the FDR to accepta-
ble levels (less than 5%). At this threshold level, we were
able to identify at least one QTL in chromosome 6 in 46
out of the 66 replicates, a TDR of almost 70%. In fact, in
34 of the replicates (51.5%) the 95% confidence set
included only causative SNPs. On average, we were able
to identify 1.18 causative SNPs, and the confidence set
included on average 0.41 noncausative SNP, thereby
demonstrating the ability of the method to target only
loci that contribute to the trait. When we increased the
threshold # to 0.076, the FDR of the method dropped to
zero, but the TDR was also significantly reduced to
roughly 8% (5 replicates out of 66). Not surprisingly, all

five of these replicates resulted in confidence sets that
included only causative SNPs.

A further increase in the sample size to 2,788 indivi-
duals (quadruple set) resulted in a significant increase in
the observed TDR of the method. To reduce the FDR to
close to 5%, the threshold for # needed to be 0.045, and
to reduce FDR to 0, / had to be 0.060, which resulted in
TDRs of 86% (43/50) and 54% (27/50), respectively.
Again, most of the replicates (32 for the 0.045 threshold
and 26 for the 0.060 threshold) yielded 95% confidence
sets that included only causative SNPs.

Finally, the confidence sets included on average less
than 0.5 nonfunctional SNP. Note that a large number of
these false-positive SNPs came from chromosome 6,
especially for the smaller sample sizes (single and double
sets). A closer investigation revealed that these were
usually SNPs that were in high linkage disequilibrium
with the causative SNPs residing on chromosome 6.
Nevertheless, as the sample size increased, our method
was able to distinguish the causative SNPs from those in
high linkage disequilibrium with them, thereby demon-
strating a significant ability to localize causative loci. For
example, for the quadruple data set with a threshold of
0.06, the CSI method identified causative SNPs in only
26 out of the 50 replicates (52%).

Discussion and conclusions

We have presented a CSI method for obtaining a set of
SNPs that contribute at least a prespecified percentage 4
to the total additive variance of a quantitative trait. Our
method provides a flexible tool that can be used in preli-
minary whole-genome association scans to significantly
reduce the number of candidate genes that need to be
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followed up, thereby making subsequent studies more
time- and cost-efficient. The key idea of our method lies
in the reversal of the traditional null and alternative
hypotheses of association versus nonassociation. The
main advantage of reversing the traditional hypotheses is
that it enables researchers to target genes with a specific
contribution to the genetic variance of a trait and at the
same time to choose the confidence level needed to iden-
tify at least one such gene, if it exists. Having the ability
to control this confidence level is particularly useful in
preliminary studies. Such studies aim to reduce the num-
ber of SNPs that will be carried over to the second stage
of the analysis and strive to ensure, with high confidence,
that enough causative loci will also be carried over. Thus
our method is particularly suitable for preliminary scans
involving a large number of SNPs that densely cover the
entire genome.

Further advantages of our method include the ability to
handle families of arbitrary size and structure and the abil-
ity to incorporate into the analysis information on perti-
nent variables that may have an effect on the quantitative
phenotype. Finally, our method is expected to be robust
with respect to population stratification because it uses
data from extended families, and family-based association
tests tend to be robust with respect to population stratifi-
cation [4]. Application of our method to the GAW17
simulated data demonstrates that our method has the abil-
ity to significantly localize putative quantitative trait loci
with high accuracy, down to within two SNPs, provided
that there is a sufficient amount of data (at least 2,000
individuals), while maintaining a low false-positive rate.

Implementation of our method requires knowledge of
the overall additive genetic variance of the trait and the
allele frequencies of the SNPs. This information can be
readily obtained from the data themselves, usually with
high accuracy, depending on the sample size. An impor-
tant tuning parameter in the implementation of our
method is the choice of the threshold / of the contribution
of the putative trait loci to the overall additive genetic var-
iance. This level /1 needs to be selected in advance, but its
value should depend on the amount of data available for
the study. Small sample sizes will require higher values of
h to warrant a low FDR, whereas larger sample sizes, in
practice more than 2,000 people, may allow for the identifi-
cation of loci with a contribution as low as 5% to the total
additive genetic variance. In principle, one could use a
bootstrap approach to obtain thresholds tailored to the
particular data used. However, for whole-genome scans
involving a large number of individuals, the computational
burden associated with bootstrap methods may render
such an approach infeasible. In such a case, one may limit
the number of SNPs to be followed up by adopting the fol-
lowing practical approach: Using our method, researchers
can obtain 95% upper confidence limits for the
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contribution of each SNP to the total additive variance of
the trait. Then, they can rank the loci according to these
upper bounds and select the top loci for further study.

The current formulation assumes additivity across the
different loci that regulate the trait and within the locus of
interest. Even though additive genetic models have been
considered a good approximation to more complicated
inheritance modes, our method could be extended to
accommodate dominant or recessive models. Finally, in
this study we focused on loci that had relatively common
functional variants (at least 28 copies of the minor allele).
Considering more rare variants significantly increases the
FDR of the method. Probably, the insufficient number of
people with rare genotypes in the samples led to misesti-
mation of the model parameters, which in turn increased
the FDR. Perhaps, for more rare variants there is a need
for larger sizes to ensure that enough individuals with the
rare allele are included.
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