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Abstract

We show that the statistical power of a single single-nucleotide polymorphism (SNP) score test for genetic
association reflects the cumulative effect of all causal SNPs that are correlated with the test SNP. Statistical
significance of a score test can sometimes be explained by the collective effect of weak correlations between the
test SNP and multiple causal SNPs. In a finite population, weak but significant correlations between the test SNP
and the causal SNPs can arise by chance alone. As a consequence, when a single-SNP score test shows
significance, the causal SNPs contributing to the power of the test are not necessarily located near the test SNP,
nor do they have to be in linkage disequilibrium with the test SNP. These findings are confirmed with the Genetic
Analysis Workshop 17 mini-exome data. The findings of this study highlight the often overlooked importance of
long-range and weak linkage disequilibrium in genetic association studies.

Background

In a typical genome-wide association study, single sin-
gle-nucleotide polymorphism (SNP) association tests,
such as score tests [1,2], are used to scan the genome
for possible genotype-phenotype associations. When an
association test shows significance, it is commonly
expected that the detected association is due to either
the direct genetic effect of the test SNP or linkage dise-
quilibrium (LD) with causal SNPs located at nearby
genomic positions [3].

In this study, we show that the causal SNPs contribut-
ing to the power of a single-SNP score test are not
necessarily located near the test SNP, nor do they have
to be in genuine LD with the test SNP. We term this
phenomenon the hyper-LD effect. The hyper-LD effect
is a consequence of weak correlations between the test
SNP and multiple causal SNPs. Score tests performed at
rare SNPs are particularly prone to this hyper-LD effect.
In this study we highlight the often overlooked impor-
tance of weak correlations between distant SNPs in
association studies.
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Methods

We first derive formulas for computing the power of the
score tests in the presence of multiple causal SNPs. We
then give theoretical explanations of the hyper-LD effect.
We focus our discussion on quantitative trait models,
but, by using an argument similar to that in Appendix 1
of Chapman et al. [4], our results can be viewed as a rea-
sonable approximation under logistic regression models
for binary traits. For clarity, in this article, the term corre-
lation refers to sample correlation in a finite population,
and the term LD refers to the expected value of the sam-
ple correlation between alleles at different SNPs.

Quantitative trait model
We consider a quantitative trait model with J diallelic
causal SNPs at positions indexed by j = 1, ..., J:

K J
E(Y):,u+2aka+2ﬂij, (1)
le=1 j=1

where Y is the vector of trait values; y is a constant vec-
tor of baseline mean trait values; vectors Z;, k = 1, ..., K,
represent measured covariates, such as age, sex, and an
indicator of whether an individual is a smoker; the
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coefficients oy represent the effects of the covariates on
trait values; the X, j = 1, ..., ], are vectors of genotypes;
and the coefficients f; represent the allele effect sizes. To
model an additive genetic effect, the genotypes are coded
as 0, 1, or 2 according to the number of minor alleles pre-
sent. Furthermore, we assume that there are no gene-gene
or gene-environment interactions and that all individuals
in the study are truly unrelated.

Score tests of genetic association

Let v, X j» and so on be the vectors of fitted values of
regressing the corresponding vectors on measured cov-
ariates Z;, k = 1, ..., K. The score statistic #[1,2] for test-
ing association between the trait value and the genotype
at a single test SNP 7 is:

u=X,.(Y -Y). ()

Under the null hypothesis of no association between
the trait values and the test SNP 7, the variance of u is
estimated by:

v= sy X)X, - Z(ZZ)"' ZX, ] = sy X,(X, - X:)  (3)

where Z = (1, Zy, ..., Zg) and syy is the sample var-
iance of the residual trait values (1 is a vector of ones).
The score statistic # measures the covariance between
the genotype vector X, and the trait value vector Y after
adjusting for measured covariates. If a covariate Z; is
correlated with X, then the covariance between X, and
Y will decrease after adjusting for Z;. The effect of cov-
ariate adjustment is also reflected in the variance esti-
mate v (see Section 6.3.2 of Bickel and Doksum [5] for
more details). To evaluate the statistical evidence for
genetic association, #*/v is compared to a chi-square
distribution with 1 degree of freedom.

Power of score tests in the presence of multiple causal
SNPs

If there are one or more causal variants, as in the trait
model given by Eq. (1), #*/v has a noncentral chi-square
distribution with 1 degree of freedom. At each test SNP,
the power (rejection probability) of the test is deter-
mined by the noncentrality parameter A:

5= (EW)” @)
v

Under the trait model given by Eq. (1),

J
E(uw) =) X,(X; - X))B;, (5)

j=1
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and the noncentrality parameter takes an intuitive
form:

2
J

A=(N-1) Er,jhj , (6)

j=1

where N is the number of individuals in the sample,
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and s;; j is defined as:
1 PN ~
Sjl,j2=m(le_le)(XjZ_ij)' )

r;; is the correlation coefficient between (the genotype
vectors at) the test SNP 7 and the causal SNP j, adjusted
for the measured covariates. We refer to /; as the direct
effect of SNP j; h]2 measures the proportion of the resi-
dual trait variance explained by the causal SNP j. The

J
term 2 1r7jh]- reflects the cumulative effect of all
]:

causal SNPs. Equation (6) extends a corresponding
equation in Clayton et al. [2] to the case of multiple
causal SNPs. Equation (6) can be extended to tests
based on collapsing rare variants at multiple SNPs [6,7]
by letting X, be the sum or weighted sum of the geno-
type vectors at the collapsed SNPs.

Hyper-LD effect
With the help of Eq. (6), we can now summarize the
theoretical findings of this study:

1. The power of a single-SNP score test reflects the

J
cumulative effect ( E r.ih; ) of all causal SNPs that
j=1

are correlated (r,; # 0) with the test SNP.

2. In the presence of multiple causal SNPs, individu-
ally weak correlations (e.g., r;; = 0.1) between the test
SNP and the causal SNPs can collectively give rise to
significant power in a score test. For example, 10 causal
SNPs, each having a direct genetic effect #; = & and a
correlation coefficient r,; = 0.1 with the test SNP would
result in a noncentrality parameter of (N — 1)/, which
is not 10 but 100 times greater than what it would be if
there were only a single causal SNP with the same effect
and correlation.
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3. In a finite population, observed correlations
between the test SNP and the causal SNPs can be due
to either LD or random fluctuations. Between SNPs in
complete LD, r;; = 1. Between common SNPs that are in
linkage equilibrium, r;; has an approximate normal dis-
tribution with mean 0 and variance 1/N[5]:

1
T‘L'jNN(O’E)'

This implies that even between SNPs in linkage equili-
brium, about 1% of the r,; values will be greater than
2.33/N*'? (= 0.088 when N = 697) by chance. In a gen-
ome-wide association study, 1% corresponds to a large
number of SNPs.

4. When either the causal SNP or the test SNP is a rare
SNP (e.g., when less than 30 copies of the minor allele
are present in the study population), the correlation coef-
ficient r,; will have a positively skewed distribution and
thus will be more prone to random fluctuations.

5. Between a pair of a common SNP; and a rare SNP,
with the same allele effect size (8; = 3,), the common SNP
will contribute more to the power of the score test per-
formed at the rare SNP than vice versa (ry1/1; >r15h5): the
correlation coefficient is symmetric (r1, = r,;), but the
common SNP can explain more trait variation (/1; >/,).

Findings 1 to 3 explain the causes of the hyper-LD
effect: the phenomenon where the statistical significance
of a score test can be explained by the collective effect
of weak correlations between the test SNP and distant
causal SNPs. Findings 4 and 5 explain why score tests
performed at rare SNPs are particularly prone to the
hyper-LD effect.

(10)

Results

In this section, we confirm our theoretical findings with
the Genetic Analysis Workshop 17 (GAW17) mini-
exome data. We performed a power analysis and exam-
ined the correlations between SNPs in the GAW17 data.
We focused exclusively on the unrelated individuals data
set, which consists of 697 individuals from seven popula-
tions and their genotypes and phenotypes. At each of the
24,487 SNPs, we used the software GenABEL [8,9] to test
the null hypothesis of Hardy-Weinberg equilibrium in
each population separately. We removed 1,730 SNPs that
yielded a p-value smaller than 10™* in any of the popula-
tions, leaving 22,757 SNPs for our analyses.

Power of score tests

The power analysis was performed using the quantita-
tive risk factor Q1. The true simulation model [10] was
known to our group. In the power analysis, the factors
Age, Sex, Smoke, and Population were considered as
covariates (the Z; in Eq. (1)).
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Figure 1 compares the analytical and simulated power
of the score tests at the 22,757 SNPs. Analytical power
was computed based on the noncentrality parameter in
Eq. (6), with the f; taken to be the true values in the
simulation model [10]. We estimated simulated power
using the average rejection rates after tests were
repeated using the first 100 replicate trait data sets. We
chose a nominal level of o = 0.05 so that the simulated
power was strictly between 0 and 1 at most SNPs. The
analytical power explains 97.0% of the variance in the
simulated power. The strong agreement between the
analytical power and the simulated power confirms our
theoretical finding 1: The power of a score test can be
explained by the cumulative effect of all SNPs that are
correlated with the test SNP. Note that the direct
genetic effects of the test SNPs cannot explain the simu-
lated power: Among the top 100 SNPs with the highest
simulated power, only 7 are true causal SNPs; the other
93 do not have direct genetic effects on the trait values.

We next present a concrete instance of the hyper-LD
effect. In this instance, none of the causal SNPs that con-
tribute to the power of the score test are located near the
test SNP. The score tests show high power (simulated
power = 1) at a cluster of SNPs (C125704, ..., C125709)
on chromosome 12. These SNPs are not causal SNPs in
the simulation model. In fact, none of the causal SNPs are
located on chromosome 12. Note that the power of the
score tests at this cluster of SNPs is still well explained by
Eq. (6). For instance, 13 causal SNPs have correlations r;;
> 0.1 with SNP C125706. At SNP C12S706, the cumulative
effect of the causal SNPs resulting from correlations is

_ 1.;h; =0.21. This effect is greater than the direct
e eé?lh,- of all but one causal SNP (the one exception
being SNP C135522 with /; = 0.23). The power of the
score test reflects this cumulative effect. The fact that sin-
gle-SNP score tests can show high power at SNPs not
located near any causal SNP makes single-SNP tests unre-
liable as a tool for mapping trait genes.

Correlations between SNP genotypes
We explained (theoretical finding 2) that in the presence
of multiple causal SNPs, even small correlations between
the test SNP and causal SNPs can be significant to the
power of a single-SNP score test. For each SNP 7 in the
GAW17 data, we counted the number of SNPs j having
r;; > 0.1 with 7 and plotted this number against the
minor allele frequency (MAF) at SNP 7 in Figure 2a. We
did not include correlations between SNPs that are
within 10 Mb of each other in the counts. Figure 2a
shows that correlations of this level are prevalent in the
human genome, even among distant SNPs.

To demonstrate that weak but significant correlations
between SNPs can arise by chance alone, we simulated
another set of 22,757 SNPs that are in linkage equilibrium
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Figure 1 Analytical and simulated power of score tests performed on the GAW17 data set. Each plus sign corresponds to one SNP in the
GAW17 data. The black circles correspond to the 39 known causal SNPs.
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Figure 2 Significant correlations between SNPs. Significant correlations (r; > 0.1) between SNPs in (a) the GAW17 data set and (b) a
simulated data set in which all SNPs are in linkage equilibrium. On the x-axes is the minor allele frequency at a SNP z. On the y-axes is the
number of SNPs j with r;; > 0.1.
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with each other: The SNP genotypes were simulated to be
independent and in Hardy-Weinberg equilibrium, with
MAFs matching those of the SNPs in the GAW17 data.
Again, for each simulated SNP, we counted the number of
SNPs having correlation coefficients greater than 0.1 with
it. The results are shown in Figure 2b. Figure 2b confirms
that modest correlations between SNPs can arise by
chance and that rarer SNPs are more prone to the effects
of random fluctuations. The overall correlation level in the
GAW17 data set is higher than that in the simulated data
set. This is expected because genuine LD does exist in the
GAW17 data.

For each SNP in the GAW17 data and in the simulated
data, we also counted how many of the 39 causal SNPs in
the GAW17 data had correlation coefficients r,; > 0.1
with it. The results are summarized in Table 1. The
results show that a large number of SNPs can be corre-
lated at level r;; > 0.1 with one or more causal SNPs as a
result of weak LD or simply by chance. For example,
8,435 independently simulated SNPs have correlations r,;
> 0.1 with at least one of the causal SNPs just by chance.

Discussion and conclusions
We have demonstrated a phenomenon that we call the
hyper-LD effect in which the statistical significance of a
score test can be explained by the collective effect of weak
correlations between the test SNP and distant causal SNPs.
Tests performed at rare SNPs are particularly prone to this
hyper-LD effect. In the presence of multiple causal SNPs,
the results of single-SNP score tests can be dominated by
the hyper-LD effect and thus can provide misleading infor-
mation for mapping trait genes if they are misinterpreted.
We emphasize the importance of weak and long-range
correlations between SNPs in association studies. These
long-range correlations can be due to genuine LD or
random fluctuation or both. The magnitude of the ran-
dom correlations arising by chance will decrease as the
population size increases (Eq. (10)), but genuine LD
between distant SNPs resulting from processes that
reflect population history will persist. We speculate that
more causal SNPs will be present in a larger population.

Table 1 Distributions of the number of causal SNPs
significantly correlated (r;; > 0.1) with each SNP

Data set Number of correlated (r;; > 0.1) causal SNPs
0 1 2 3 4 5 6 7 >7
GAW17 13,288 5,153 2402 870 424 278 136 85 121

Simulated data 14322 5229 2092 729 245 104 29 7 O

For each SNP in the GAW17 data and in the simulated data, we count how
many of the 39 causal SNPs in the GAW17 data have correlation coefficients
rj > 0.1 with it. We find that 9,469 SNPs in the GAW17 data and 8,435 SNPs in
the simulated data are correlated (r; > 0.1) with at least one causal SNP. Note
that in the simulated data set, all SNPs are simulated to be in linkage
equilibrium with each other and with the 39 causal SNPs, so all observed
correlations are due to chance alone.
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If the number of causal SNPs is larger, even weaker cor-
relations will be significant to the power of the associa-
tion tests. So even in large populations, the hyper-LD
effect will still be of concern.

Possible approaches to alleviating the hyper-LD effect
include increasing the study population size, effectively
increasing the MAFs by collapsing rare variants, using
gene-set or pathway analysis, and combining informa-
tion from family-based linkage or association analysis.
The effectiveness of these approaches needs to be inves-
tigated in future studies.
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