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Abstract

In genome-wide association studies, gene-based methods measure potential joint genetic effects of loci within
genes and are promising for detecting causative genetic variations. Following recent theoretical research in
statistical multiple-hypothesis testing, we propose to adapt the Higher Criticism procedures to develop novel gene-
based methods that use the information of linkage disequilibrium for detecting weak and sparse genetic signals.
With the large-scale exonic single-nucleotide polymorphism data from Genetic Analysis Workshop 17, we show
that the new Higher-Criticism-type gene-based methods have higher statistical power to detect causative genes
than the minimal P-value method, ridge regression, and the prototypes of Higher Criticism do.

Background

Genetic factors within genes, pathways, or other physi-
cal and functional genome segments often jointly affect
the pathogenesis of a disease. Compared with single-
locus association analysis in genome-wide association
studies, gene-based multiple-loci analysis explores the
joint effect of genetic factors related to these func-
tional units and thus likely better reveals the biomedi-
cal mechanism of complex traits. Because gene-based
methods are potentially more powerful in discovering
the complex genetic signals of common diseases, they
are considered promising for the study of genetic asso-
ciations [1]. In recent literature, a number of gene-
and pathway-based methods have been studied [2-10].
However, they either assume independent loci [6,9] or
have no theoretical justification for ways of considering
linkage disequilibrium (LD) [3]. Because of the physical
or genetic closeness of the grouped loci, LD is a signif-
icant and informative characteristic of genomic seg-
ments of genes. LD is particularly significant among
genetic factors obtained from next-generation sequence
data, for example, rare single-nucleotide polymorphism
(SNP) variations located within the exome, which can
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hardly be replaced by tagging SNPs without losing
information. Thus, to better reveal causative genes of
complex diseases, investigators strive to properly use
the information of LD by developing methods based
on a solid statistical theory of multiple-hypothesis
testing.

In the latest development of multiple-hypothesis test-
ing theory, the Higher Criticism (HC) and innovated
Higher Criticism (iHC) methods have proved to be
asymptotically the most efficient hypothesis-testing pro-
cedures [11,12]. These methods sustain the lowest
boundary for the weakness and sparsity of signals, below
which signals are statistically undetectable. This prop-
erty is important for genome-wide association studies
because the unfound genetic factors are likely to be
sparse (i.e., true genetic factors are only a small propor-
tion of all considered factors) and weak (i.e., statistical
associations of true genetic factors are weak at the
population level because of small genetic effects or rare
variations). Furthermore, HC-type procedures can incor-
porate the correlations into test statistics to provide
higher statistical power in many circumstances. Based
on this celebrated advance of multiple-testing theory, we
propose to develop more powerful HC-type gene-based
methods that incorporate LD information within genes.
Using the large-scale exonic SNP data from Genetic
Analysis Workshop 17 (GAW17), we compare the
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prototypes and extensions of HC-type methods with the
single-SNP method and ridge regression. The results
show that the original HC and iHC methods are not
superior to the single-SNP method and ridge regression,
but two new methods, eigen-decomposition Higher Cri-
ticism (eHC) and innovated Higher Criticism based on
marginal estimation of genetic effects (iHCM), show
better performance.

Methods

We applied six gene-based methods to analyze the
GAW17 data of 697 unrelated individuals from the
pilot3 study of the 1000 Genomes Project. Each method
was applied to each of the 200 replicates of simulated
Q1, Q2, and binary traits. Their ability to detect causa-
tive genes was compared on the basis of the average
performance over the 200 replicates. Genotype was
coded as the number of major alleles at each SNP.

Method 1: minimal P-value method

The minimal P-value method is a gene detection
method that uses single-SNP analysis. The association of
individual SNPs in a gene are tested, and the smallest P-
value (or, equivalently, the test statistic with the largest
magnitude) is used to study the significance of that
gene. For quantitative traits, the T-test statistic from a
simple regression model is used. For the binary out-
come, a Z statistic is used [13].

Method 2: ridge regression

Ridge regression is a natural and powerful approach for
testing the association between a response and a group
of correlated covariates. Here, we apply ridge regression
to detect gene-based association, accommodating LD
among SNPs within genes. To our best knowledge, we
did not find in the literature any application of ridge
regression to testing for association of grouped SNPs.
Our simulations (not reported here) show that in many
situations ridge regression has a higher statistical power
than many LD-incorporating methods proposed in the
literature, such as principal components analysis [2,7],
linear and quadratic combination tests, and the decorre-
lation test [3]. To estimate the vector of ridge regression
coefficients, we obtain the tuning parameter by minimiz-
ing the cross-validation prediction (R function Im.ridge
[14]). The sum of the squared residuals describing the
goodness-of-fit of the model is treated as the score for
each gene. For simplicity, the same procedure is applied
to both quantitative and binary traits.

Method 3: Higher Criticism
The Higher Criticism is a multiple comparisons proce-
dure initialized by Tukey [15] and further developed by
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Donoho and Jin [11]. We adapt this procedure as a
gene-based method to detect the significance of the
association between a gene and a trait. For genes con-
taining multiple SNPs, the rejection of the association
between a gene and a trait is equivalent to the rejection
of the joint null hypothesis between multiple SNPs in
the gene and the trait. Let p(;) < p(2) < ... < p, be the
ordered P-values of L individual SNPs in a gene, as
described in method 1. The HC statistic for this gene is:

L2 (i ~Pg) )
max . (1)

HC =
{fi%sf’(f)%} [p(j)(l =P ]1/2

The idea of HC is to find the largest standardized dif-
ference between the observed and expected fractions of
significance under the joint null hypothesis over a range
of significance levels. It provides proper family-wise error
control for simultaneously testing multiple hypotheses.
Under the assumption of independence among tests,
Donoho and Jin [11] proved that HC is optimal in the
sense that among all testing procedures, HC provides the
lowest boundary for the region of amplitude versus spar-
sity in which the procedure has asymptotically full statis-
tical power. In the GAW17 data, because most genes
have a small number of SNPs, we replace the lower
bound of the significance range 1/L with 107,

Method 4: innovated Higher Criticism

To exploit the potential advantages that correlations
among test statistics can offer, Hall and Jin [12] devel-
oped innovated Higher Criticism (iHC) to incorporate
the information of correlations. They showed that iHC
can provide higher power when the correlation matrix is
a Toeplitz matrix or when the correlation decays at a
polynomial rate along with the distance between the
correlated tests. To adapt iHC into the gene-based
detection, we use the following procedure:

Step 1. Jointly estimate the vector of regression coeffi-
cients for the SNPs in a gene, such that f ~ N(B.Z).
For quantitative traits, the least-squares estimation is
applied so that:

S=02(xX)7, ©)

where X is the design matrix of genotypes. Because °
is unique for a specific outcome variable, it will not
affect the comparison of the statistics and can thus be
treated as having a value of 1. For the binary trait, we fit
a multicovariate logistic regression to get the maximum-
likelihood estimator of the coefficient vector and its var-
iance matrix.
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Step 2. Let:
U = () 1<k, j<n) (3)

be an inverse matrix (lower triangular) of the Cholesky
factorization of ¥, that is, 3y’ =1. We trim U by
making the lower off-diagonals zero if they are equal to
or more than b rows away from the central diagonal.
Specifically, the resulting matrix is:

U= (akj){lsk,]‘Sn}’ (4)

where for some bandwidth 1 < b < #, ﬁk]: uy; if k -
b+1<j<k and U =0 otherwise. Hall and Jin [12]
suggested using use b = log n. Here we choose b as the
largest integer equal to or less than log n.

Step 3. We get matrix {J by normalizing each col-
umn of [J such that the L2 norm of each column of [J
isl.Let v=0U.

Step 4. The iHC statistic is the HC statistic based on:

pj=P{|N(O,1)|2‘(Vﬁ)],‘}, 1<j<n (5)

Method 5: eigen-decomposition Higher Criticism

The key idea of iHC is to transform the correlated tests
into independent tests so that the HC procedure is valid
to apply. The transformation process incorporates the
correlation information into the new test statistics. Spe-
cifically, Cholesky decomposition allows Vﬁ to be
approximately N(Vp, I), where I is an identity matrix.
Note that when the trimming bandwidth b = 1, we have
V = U. Here we consider eigen-decomposition, which
can also provide the transformation into independence.
The steps are as follows.

Step 1. Estimate the coefficients ﬁ and the corre-
sponding covariance 3 of the SNPs in a gene as in step
1 of method 4.

Step 2. We take eigen-decomposition:

S=6"(XX)" =QAQ, (©6)

2—1/2 _ QA_I/ler (7)

where Q is a matrix whose columns are eigenvectors
of 3 and A is a diagonal matrix whose diagonal ele-
ments are the eigenvalues corresponding to the eigen-
vectors. Note that we have:

123 NN(zfl/zﬂ,I), (8)

which satisfies the assumption of independent normal-
ity in the theoretical research of Donoho and Jin [11].
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Step 3. The eHC statistic is the HC statistic based on

the P-values:
("3
j

Method 6: innovated Higher Criticism based on marginal
estimation

Because many SNPs in the GAW17 data have rare
minor alleles, the joint estimation of genetic effects by
multiple covariate (logistic) regression is unstable (ima-
gine a high-dimensional contingency table of many cells
being 0). To accommodate this issue, we studied inno-
vated Higher Criticism based on marginal estimation of
genetic effects (iHCM). Specifically, we obtain the test
statistics for SNPs in a gene using single-SNP analysis
(as in method 1, T-test statistics are used for quantita-
tive traits; Z statistics are used for the binary disease
liability).

For both quantitative and binary traits, we consider two
approaches to estimate the correlations among the test
statistics. In the first approach, from each data replicate
we calculate one set of marginal T or Z statistics and
then combine the 200 sets of test statistics from the 200
replicates to calculate the Pearson correlation coeffi-
cients. In the second approach, we approximate the cor-
relation between two test statistics by using the
correlation between the genotypes of these two SNPs.
The second method is not quite proper, especially under
nonnull situations, but it has been widely used in the lit-
erature [6,16]. Based on our experience, the first method
is slightly better. The results reported later in this paper
are based on the first estimation approach. Using B to
denote the marginal T- or Z-test statistics and § to
denote the estimated covariance matrix of ﬁ (because
the marginal test statistics are asymptotically standard
normal distributed under the null hypothesis), we applied
steps 2—4 from method 4 to obtain the iHCM statistic.

pj:P{|N(O,1)|2

}, 1<j<n. (9)

Approaches for comparison among genes

We consider two permutation-based approaches to
compare the significance of different genes adjusted for
the distinct number of SNPs and their correlation struc-
tures. In each permutation, we randomly shuffle the
response and then calculate all the test statistics from
methods 1-6 for all genes. Let S; and ng, i=1..,15Lj
=1, ..., J, denote any test statistic from methods 1-6 for
the ith gene from the original data and from the jth per-
mutation. The first approach calculates the empirical P-
values for each gene:

ij =

J

The size of set {S'- >Si,j=1,...,]} (10)

pi =
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The second approach normalizes the scores from Eq.
(10) to make them directly comparable among genes.
Specifically, the normalized scores are:

;= S mean(s) e G5, (11)
(5)
where S; = (S,l‘]‘)lg j< is a vector of the test statistics of
gene i from permutations. For both approaches, the
number of permutations is / = 10,000. To simplify the
computation, the statistics obtained from permuting
replicate 1 are also used to get the empirical P-values
and the normalized scores for other replicates, because
the null distributions for all replicates are the same.
Note that our knowledge of the underlying causative
genes was used only for the purpose of evaluating the
performance of the gene detection methods. The design
of the analysis methods does not rely on knowing which
genes are true.

Results

The genotype data were cleaned in the following way
before analysis. If the vectors of SNP genotypes in a
gene were linearly dependent, we removed SNPs with
the smallest minor allele frequencies (MAFs) until the
remaining SNP genotype vectors became linearly inde-
pendent. This process avoided overfitting the models
and retained the full genetic information of each gene
because the deletion did not change the linear space
expanded by the SNP genotype data. We analyzed
23,980 SNPs after 507 redundant SNPs (not including
any causative SNPs) were removed. Most of the remain-
ing SNPs had very small MAF: Both the minimum and
the 1st quantile were 0.000717, the median was
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0.002152, the mean was 0.030630, the 3rd quantile was
0.01076, and the maximum was 0.4993.

The number of SNPs and the LD structure within
genes are two critical factors for gene-based methods.
The GAW17 data contain 3,205 genes. For the distribu-
tion of SNP numbers within genes, both the minimum
and the 1st quantile were 1, the median was 2, the
mean was 7.5, the 3rd quantile was 8, and the maximum
was 205. The distribution of the absolute Pearson corre-
lation coefficients between all pairwise SNPs within
genes also skewed to the right: The median was
0.008752, the mean was 0.05682, the 3rd quantile was
0.04558, and the maximum was 0.9606. Figure 1 shows
the distributions of the correlations between SNP pairs
that are located within the same genes and have dis-
tances 1 (adjacent), 2 (separated by one SNP), or 3
(separated by two SNPs). As shown in Figure 1, there is
an overall trend of correlation decay when the distance
between the SNPs increases. To some extent, this obser-
vation justifies the application of the iHC procedure,
which asymptotically performs well when the correlation
decays at a polynomial rate.

We compared the six methods described earlier
according to how well they ranked genes. A gene with a
smaller empirical P-value (or a larger standardized score)
was more statistically significant and thus had a higher
rank (i.e., a smaller value of rank). We prefer methods
that give higher ranks to causative genes. For the quanti-
tative traits Q1, Q2, and the binary disease liability, the
table in additional file 1 lists the average and standard
deviation of ranks (over 200 replicates) of causative genes
based on empirical P-values. Different methods may pro-
vide distinct advantages for different genes. The means
and standard deviations for the average ranks over all
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Figure 1 Distribution of correlation magnitude between SNPs. We count the correlation between a pair of SNPs if they are located in the
same gene and have a distance 1 (adjacent), 2 (separated by one SNP), or 3 (separated by two SNPs).
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causative genes are also given in the table in additional
file 1 and provide an overall evaluation for different
methods. The smallest average ranks are boldfaced to
highlight the best performances. From the table in addi-
tional file 1 we can see that the newly developed HC-
based methods eHC and iHCM have better performance.
Particularly for Q1, Q2, and the binary trait, the iHCM
method is uniformly the best. For Q2, the eHC method
also performs well. The original HC method [11] and the
iHC method [12] are not superior to the minimal P-value
method and ridge regression. Our results for the compar-
ison of the standardized scores to the ranked genes give
similar patterns.

Discussion

For the large-scale exonic SNP data of unrelated indivi-
duals and the 200 simulation replicates of quantitative
and binary traits, most of the true genes are not ranked
at the top. Taking the binary trait as an example, we
find that the mean of the average ranks obtained from
the minimal P-value method is even larger than a value
that would be obtained by random choice (=1,600, or
half the total gene number). One of the potential causes
is rare variations. In the GAW17 data most of the cau-
sative SNPs have very small MAFs (< 0.01). SNPs with
rare variations are difficult to detect for two reasons.
First, the statistical signals are weak; and, second, the
traditional association measurements, such as those
based on regression or logistic regression, do not pro-
vide stable estimates, which is evidenced by the large
standard deviations for the ranks of true genes over 200
replicates in Table 1.

For the weak signal problem, HC-type methods are
ideal for detecting weak and sparse signals. However,
the stability problem affects any method developed on
the basis of unstable estimations. Some methods that
combine rare variations to stabilize the estimations (e.g.,
weighted-sum methods [17] or collapsing methods [18])
can be applied to improve the HC-type methods.

There are several gaps between GAW17 data and the
assumptions of the HC-type methods. First, the theoreti-
cal study for HC-type methods is based on asymptotics
and assumes a large number of tests in each group.
However, the GAW17 data have relatively small num-
bers of SNPs in genes. Second, the iHC method assumes
that the correlation matrix is a Toeplitz matrix or has
elements that decay at a polynomial rate. Figure 1 does
show an overall trend of decay, but the real correlations
in specific genes are much more complicated. We
expect that the original iHC method could perform bet-
ter for those data from genome-wide association studies
that are closer to these assumptions when they have
more SNPs contained in genes and more consistent cor-
relation decay (e.g., among further separated SNPs).
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Conclusions

Gene-based methods that properly incorporate linkage
disequilibrium information can improve the detection of
causative genes. In Genetic Analysis Workshop 17, we
studied the large-scale exonic SNP data of unrelated
individuals and the 200 simulation replicates of quanti-
tative traits (Q1, Q2) and the binary trait. Two novel
HC-type gene-based methods, eHC and iHCM, have
better performances than the minimal P-value method
(a benchmark), ridge regression (a good method accom-
modating linkage disequilibrium), and the original HC
methods (HC and iHC) in that eHC and iHCM lead to
higher average ranks of all causative genes.

Additional material

Additional file 1: Average and standard deviation of ranks of true
genes over 200 replicates for Q1, Q2, and the binary trait.
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