Jin et al. BMC Proceedings 2011, 5(Suppl 9):S66
http://www.biomedcentral.com/1753-6561/5/59/566

BMC
Proceedings

PROCEEDINGS Open Access

Principal components ancestry adjustment for
Genetic Analysis Workshop 17 data

Jing Jin', Jane E Cerise', Sun Jung Kang? Eun Jung Yoon', Seungtai Yoon?, Nancy R Mendell', Stephen J Finch'”

From Genetic Analysis Workshop 17
Boston, MA, USA. 13-16 October 2010

Abstract

using the dichotomized phenotype.

Statistical tests on rare variant data may well have type | error rates that differ from their nominal levels. Here, we
use the Genetic Analysis Workshop 17 data to estimate type | error rates and powers of three models for
identifying rare variants associated with a phenotype: (1) by using the number of minor alleles, age, and smoking
status as predictor variables; (2) by using the number of minor alleles, age, smoking status, and the identity of the
population of the subject as predictor variables; and (3) by using the number of minor alleles, age, smoking status,
and ancestry adjustment using 10 principal component scores. We studied both quantitative phenotype and a
dichotomized phenotype. The model with principal component adjustment has type | error rates that are closer to
the nominal level of significance of 0.05 for single-nucleotide polymorphisms (SNPs) in noncausal genes for the
selected phenotype than the model directly adjusting for population. The principal component adjustment model
type | error rates are also closer to the nominal level of 0.05 for noncausal SNPs located in causal genes for the
phenotype. The power for causal SNPs with the principal component adjustment model is comparable to the
power of the other methods. The power using the underlying quantitative phenotype is greater than the power

Background

One limitation of genome-wide association studies is
that population stratification can be a confounding vari-
able. Population stratification occurs when there are sys-
tematic ancestry differences in allele frequencies
between case subjects and control subjects. If not taken
into account, population stratification can cause false-
positive and/or false-negative findings [1] and can pro-
duce spurious associations [2]. Principal components
analysis can be used to correct for population stratifica-
tion by applying methods that infer genetic ancestry [3].
Population stratification is mainly due to the demo-
graphic history of a population, natural selection, and
random fluctuations resulting from admixture. In this
paper we examine the statistical properties of analysis
procedures used in genome-wide association studies by
adjusting principal components (PCs) across the whole
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genome. Another approach is to use local PC adjust-
ment [4], but the Genetic Analysis Workshop 17
(GAW17) genotype data are not sufficiently extensive to
consider this strategy.

The GAW17 data set is composed of mini-exome
simulated data using 697 unrelated subjects from the
1000 Genomes Project. The quantitative phenotypes Q1
and Q2 are generated as normally distributed pheno-
types. We document the p-value of the test of the coeffi-
cient of a genotype with and without adjusting for
population stratification in selected genes known not to
cause the phenotypes Q1 and Q2. We compare the
power of the regression coefficient test when using PCs
for ancestry adjustment with the power when using the
seven populations given as ancestry controls for all the
genes known to cause phenotypes Q1 and Q2. We
study two types of phenotype, quantitative and dichoto-
mized, test all the single-nucleotide polymorphisms
(SNPs) that cause Q1 and Q2, and examine selected
noncausal SNPs for these two traits.
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Table 1 Distribution of minor allele frequencies of SNPs in the genes studied
Genes SNPs MAF < 0.005 0.005 < MAF < 0.01 0.01 < MAF < 0.05 0.05 < MAF < 0.5 Total
Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2

Causal Noncausal 60 100 5 9 12 15 9 15 86 139

Causal 32 61 0 5 4 2 2 39 72
Noncausal Noncausal 1422 532 189 57 295 90 288 80 2,194 759

The Q1 causal genes are ARNT, ELAVL4, FLT1, FLT4, HIF1A, HIF3A, KDR, VEGFA, and VEGFC. The Q2 causal genes are BCHE, GCKR, INSIG1, LPL, PDGFD, PLAT, RARB,
SIRT1, SREBF1, VLDLR, VNN1, VNN3, and VWF. The noncausal genes are all genes on chromosomes 12, 21, and 22 for Q1 and all genes on chromosomes 21 and

22 for Q2.

Methods

A SNP that causes a trait is one that is specified in the
function used to simulate the trait [5,6]. Any other SNP
is called noncausal. SNPs on chromosomes 12, 21, and
22 are used as SNPs not causing Q1. SNPs on chromo-
somes 21 and 22 are used as SNPs not causing Q2.
Table 1 lists the distribution of the minor allele frequen-
cies (MAFs) of the SNPs in the genes studied.

We dichotomize the quantitative measures Q1 and Q2
so that the top 25% of each of the 200 replicates is
scored as affected (1) and others as unaffected (0).The
independent variables in these analyses are selected
from the number of minor alleles in the ith SNP geno-
type (SNP,), the participant’s age (Age) and smoking sta-
tus (Smoking), six indicator variables of the populations
(POPy, ..., POPg), and the 10 ancestry-adjusted PC
scores (GPCy, ..., GPC;,). We use the FamCC software
[7] to calculate these 10 PCs. All 24,487 SNPs are used
in the calculations.

We use the PLINK software [8] to fit three logistic
regression models to assess the association between each
SNP in the genes studied and the dichotomized pheno-
type. The ith SNP is considered associated with the phe-
notype when the permutation p-value of the coefficient
of SNP; reported in the PLINK logistic regression analysis
is less than 0.05. Because Q1 is affected by age and smok-
ing, the models considered are the following: (1) the SNP
model, in which each SNP is adjusted for age and smok-
ing; (2) the population adjustment model, in which each
SNP is adjusted for the populations, age, and smoking;
and (3) the PC adjustment model, in which each SNP is
adjusted for age, smoking, and ancestry adjustment PCs.
The models are defined as follows:

SNP model:

Bo + B1(SNP;) + B,(Age) + B3(Smoking), (1)
Population adjustment model:

Bo + B1(SNP,) + B, (Age) + B3(Smoking) + B,(POP;) + ...+ By(POPg),  (2)
PC adjustment model:

Bo + Bi(SNP;) + B,(Age) + B;(Smoking) + B,(GPC,) +...+ Bi5(GPCyq).  (3)

For the population adjustment model, only six indica-
tors are needed to represent seven populations. The
Luhya population is the reference population for the
dichotomized phenotype, and the CEU population (Eur-
opean-descended residents of Utah) is the reference
population for the quantitative phenotype. Because Q2
is not associated with either age or smoking, the covari-
ates Age and Smoking are not used in the models for
Q2. We also fit the three models to the continuous phe-
notypes Q1 and Q2 using PLINK. Each model is fitted
to the 200 replicates provided.

Results

The type I error rate (i.e., false-positive rate) for noncau-
sal genes is the fraction of p-values from noncausal
SNPs with permutation p-value less than 0.05. Table 2
contains the type I error rates for Q1 and Q2. The PC
adjustment model has a type I error rate closer to 0.05
than the type I error rates for the SNP model and the
population adjustment model. For Q2, the type I error
rates are relatively close to the nominal value of 0.05 for
each model.

Tables 3 and 4 contain the results for Q1 and Q2
using all causal and noncausal SNPs in causal genes that
determine that trait. For noncausal SNPs in causal genes
for both Q1 and Q2, the PC adjustment model has per-
mutation type I error rates that are closest to 0.05,
although the type I error rates are slightly above the
nominal value of 0.05. In Q1 the PC adjustment model
has the lowest power for causal SNPs, possibly because
of better control of the type I error rate. For Q2, where
all null type I error rates are relatively close to the nom-
inal rate of 0.05, the power for causal SNPs is roughly
the same for the three models.

Discussion

Because the disease status of interest is dichotomous in
many studies, we study these dichotomized phenotypes.
Chromosomes 21 and 22 have no causal SNPs for both
Q1 and Q2. Therefore we define the SNPs on these two
chromosomes as noncausal SNPs. Because other
GAW17 participants have reported highly significant
association between SNPs on chromosome 12 and Ql,
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Table 2 Type | error rates for Q1 and Q2 using all noncausal SNPs in noncausal genes

Model MAF < 0.005 0.005 < MAF < 0.01 0.01 < MAF < 0.05 0.05 < MAF < 0.5 Total

D (%) Q (%) D (%) Q (%) D (%) Q (%) D (%) Q (%) D (%) Q (%)
Q1
SNP 97 6.0 9.0 93 170 212 209 313 12.1 11.7
Population adjustment 9.1 58 9.0 8.5 16.3 179 200 236 11.5 10.0
PC adjustment 6.6 57 6.3 6.4 6.8 6.9 57 6.7 6.5 6.0
Q2
SNP 59 56 6.8 7.0 59 58 6.7 79 6.1 6.0
Population adjustment 6.1 56 7.7 7.1 59 56 56 5.7 6.2 57
PC adjustment 57 54 6.0 6.0 53 50 4.8 49 56 54

D is the dichotomized phenotype; Q is the quantitative phenotype. Noncausal SNPs for Q1 come from chromosomes 12, 21, and 22. Noncausal SNPs for Q2
come from chromosomes 21 and 22. Nominal type | error rate = 0.05, 200 replicates.

Table 3 Type | error rates and power for Q1 using all SNPs in causal genes

Model MAF < 0.005 0.005 < MAF < 0.01 0.01 < MAF < 0.05 0.05 < MAF < 0.5 Total

D (%) Q (%) D (%) Q (%) D (%) Q (%) D (%) Q (%) D (%) Q (%)
Noncausal SNPs
SNP 135 78 138 144 169 16.7 184 236 145 11.1
Population adjustment 11.3 7.8 10.0 11.7 15.8 144 8.1 9.7 11.5 9.1
PC adjustment 57 6.3 54 9.3 6.1 4.2 76 89 59 64
Causal SNPs
SNP 256 214 NA NA 93.1 982 91.8 99.3 376 352
Population adjustment 226 217 NA NA 913 97.7 853 983 347 354
PC adjustment 143 19.8 NA NA 64.0 756 64.5 855 232 303
D is the dichotomized phenotype; Q is the quantitative phenotype. Nominal type | error rate = 0.05, 200 replicates.
Table 4 Type | error rates and power for Q2 using all SNPs in causal genes
Model MAF < 0.005 0.005 < MAF < 0.01 0.01 < MAF < 0.05 0.05 < MAF < 0.5 Total

D (%) Q (%) D (%) Q (%) D (%) Q (%) D (%) Q (%) D (%) Q (%)
Noncausal SNPs
SNP 52 59 7.3 6.1 58 6.5 55 6.0 54 6.0
Population adjustment 6.3 57 11.2 78 6.1 54 49 57 6.5 58
PC adjustment 54 56 6.9 4.1 52 53 49 52 54 54
Causal SNPs
SNP 119 133 304 315 39.8 456 55.8 80.8 16.0 18.2
Population adjustment 1.2 129 31.1 29.1 394 46.5 480 70.8 152 175
PC adjustment 1.2 12.7 265 24.5 36.5 444 453 69.8 146 169

D is the dichotomized phenotype; Q is the quantitative phenotype. Nominal type | error rate = 0.05, 200 replicates.

we include the SNPs on chromosome 12 in our set of
noncausal SNPs. For the genes reported here, the PC
adjustment model has an empirical type I error rate that
is apparently closer to the nominal level for SNPs in
genes not causing the phenotype and for noncausal
SNPs in causal genes, especially for genes determining
Q1. The p-values for Q2 are much closer to the nominal
level of 0.05 for each of the three models. This may be

due to the way that the Q2 phenotype was generated.
Although the PC adjustment model successfully controls
the type I error rate, considering the actual population
of origin does not. For noncausal SNPs in causal genes,
the type I error rates in the PC adjustment model of the
continuous Q1 measure are slightly higher than the
nominal level in two of the four SNP strata. This may
be due to the association between the noncausal SNPs
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and causal SNPs within the gene resulting from linkage
disequilibrium. It may also result from multiple testing.

The power of the PC adjustment model is relatively
strong and increases as the MAF increases, as expected.
The power of regression modeling for the quantitative
phenotype is greater than the power of logistic regres-
sion modeling of the dichotomized phenotype for both
Q1 and Q2.

In this study, we compare the PC adjustment model
with a model including population of origin as a factor.
The PC adjustment model has both a type I error rate
closer to the nominal level of 0.05 and high power. This
is because, in general, PCs calculated using all SNPs
contain more information about demographic history,
natural selection, and random fluctuation in admixture
than the population to which a participant is assigned.
That is, participants’ genes may still hold genetic infor-
mation that distinguishes them from the population
from which they originated.

The data used here were simulated rather than real.
We set our significance level to 0.05 because the num-
ber of replicates is 200. As a result, the expected num-
ber of null rejections is 10, which allows for meaningful
statistical comparison. We also studied a nominal signif-
icance level of 0.01 (data not shown) and found similar
control of the type I error rate except for SNPs with
MAF < 0.005, where the type I error rate was 0.036,
somewhat higher than expected. We could not study
the type I error rate using typical genome-wide signifi-
cance levels, such as 1078,

Conclusions

The PC adjustment model with permutation p-value
controls the type I error rate in the GAW17 Q1 and Q2
phenotypes. The power of the regression analysis of the
quantitative phenotype is greater than the power of the
analysis of the dichotomized phenotype. There is a slight
decrease in power for the PC adjustment model even
when MAF < 0.005.
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