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Abstract

Compared to genome-wide association analysis, linkage analysis is less influenced by allelic heterogeneity. The use
of linkage information in large families should provide a great opportunity to identify less frequent variants. We
perform a linkage scan for both dichotomous and quantitative traits in eight extended families. For the
dichotomous trait, we identified one linkage region on chromosome 4q. For quantitative traits, we identified two
regions on chromosomes 4q and 6p for Q1 and one region on chromosome 6q for Q2. To identify variants that
contribute to these linkage signals, we performed standard association analysis in genomic regions of interest. We
also screened less frequent variants in the linkage region based on the risk ratio and phenotypic distribution
among carriers. Two rare variants at VEGFC and one common variant on chromosome 4q conferred the greatest
risk for the dichotomous trait. We identified two rare variants on chromosomes 4q (VEGFC) and 6p (VEGFA) that
explain 12.4% of the total phenotypic variance of trait Q1. We also identified four variants (including one at VNN3)
on chromosome 6q that are able to drop the linkage LOD from 3.7 to 1.0. These results suggest that the use of
classical linkage and association methods in large families can provide a useful approach to identifying variants
that are responsible for diseases and complex traits in families.

Background
Common variants have been successfully identified for
many diseases and complex traits through the use of gen-
ome-wide association studies (GWAS). Although many
of the findings from GWAS have been replicated in dif-
ferent populations, current association results have yet to
explain many existing linkage regions of interest.
Furthermore, GWAS have limited power to identify rarer
variants, in contrast to linkage analysis, which is not sen-
sitive to allelic heterogeneity [1]. Thus the use of linkage
information in family data (especially in large pedigrees)
provides great opportunities to identify rarer variants.
In this paper, we present our analysis of the Genetic

Analysis Workshop 17 (GAW17) family data [2] (the first

set of simulated family data, without knowledge of the
underlying simulating model). Our data consist of one
dichotomous trait (with 30% of individuals being
affected) and three quantitative traits for 697 individuals
from 8 extended families. Each individual has genotypes
at 24,487 single-nucleotide polymorphisms (SNPs) across
22 autosomes, and variants at more than 85% of these
SNPs are either rare (minor allele frequency [MAF] <
0.01) or less frequent (0.01 < MAF < 0.05). The GAW17
family data are rich in relative pairs (579 sib pairs, 2,430
second-degree relative pairs, and thousands of other
types). Each family includes four generations, with family
size varying from 73 to 128. For the dichotomous trait,
there are 48 affected sib pairs, 251 affected second-degree
relative pairs, 202 affected third-degree relative pairs, 43
affected fourth-degree relative pairs, and 5 affected fifth-
degree relative pairs. The use of more distantly related
relative pairs has the potential to increase the power to
identify rare, infrequent, and common variants.

* Correspondence: wmchen@virginia.edu
1Center for Public Health Genomics, University of Virginia, West Complex, 6th
Floor, Suite 6111, PO Box 800717, University of Virginia, Charlottesville, VA
22908, USA
Full list of author information is available at the end of the article

Chen et al. BMC Proceedings 2011, 5(Suppl 9):S68
http://www.biomedcentral.com/1753-6561/5/S9/S68

© 2011 Chen et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:wmchen@virginia.edu
http://creativecommons.org/licenses/by/2.0


Rather than breaking large pedigrees into smaller ones
and then applying a standard software package (such as
Merlin [3]), in this analysis we develop new implementa-
tions to perform genome-wide linkage scans in large
pedigrees for both dichotomous and quantitative traits.
We investigate the association of variants in the identi-
fied linkage regions.

Methods
Linkage and association methods for dichotomous traits
For the dichotomous trait, we use an affected relative
pair nonparametric linkage (NPL) scan. The NPL
method assumes that, in the genomic region in linkage
with the trait, affected relative pairs are expected to
share more alleles identical by descent (IBD) than aver-
age. Let πij denote the proportion of alleles shared IBD
between relatives i and j at a locus. πij can be estimated
as p ij based on all genotype information [3]. The
expected value of πij is twice the kinship coefficient fij
(e.g., dth-degree relative pairs have a kinship coefficient
1/2d+1 in an outbred family). For highly informative
markers, the mean and variance of p ij are approxi-
mately 2jij and var(πij) (e.g., 1/8 for full siblings),
respectively, under the null hypothesis of no linkage. It
is straightforward to consider the Z statistic:
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where (i, j) and (k, l) index all affected relative pairs.
The covariance of the estimated IBD sharing can be
well approximated with the technique used in the
regression-based quantitative trait linkage method [4].
In the special case in which the exact IBD sharing is
known (i.e., p p 

ij ij= ), as in our simulated GAW17
families, it is sufficient to compute Σi,jΣk,l Cov(πij, πkl),
which is a function of the pedigree structure (an algo-
rithm described by Chen and Abecasis [5]). Because it is
likely that more distantly related affected relative pairs
will provide more information for identification of rare
variants, we consider a weight:

wij
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for each affected relative pair (parent-offspring pairs
are excluded for the lack of variation). Because the cov-
ariate Age is a strong risk factor for the dichotomous
trait (a 10-year increase in age doubles the risk of being
affected), it is crucial to take into account the effect of
aging in the NPL analysis. We include only affected

relative pairs with an age difference no larger than 16
years in the NPL analysis. Although this threshold is
somewhat arbitrary, we subsequently applied other
threshold values to ensure that our results were not too
sensitive to this value. Note that our linkage results are
not inflated by potential linkage disequilibrium (LD)
between adjacent markers, because the IBD statistics are
known in our simulated data. In practice, IBD statistics
need to be estimated, and the LD needs to be properly
modeled in the linkage analysis when genotype data for
the parents of affected sib pairs are not complete [6].
To examine the association of SNPs with simulated

phenotypes, we apply the standard transmission disequi-
librium test (TDT) [7] and the more recent generalized
disequilibrium test (GDT) [8] to the simulated data. The
GDT is able to make use of all discordant relative pairs
in extended pedigrees to compare the allele frequency
differences between affected and unaffected individuals
within families. Given the potential lack of power of
existing association methods to detect rare variants, we
developed a strategy to screen rare and infrequent var-
iants in the linkage region. At each SNP with MAF <
0.05, we compute the odds of being affected among car-
riers of the variant. If the odds among carriers of the
variant are much larger (or smaller) than the overall
odds, we perform follow-up analyses for this SNP and
consider the overall effect of the collapsed rare and
infrequent variants.

Linkage and association methods for quantitative traits
For the quantitative traits, we implement a score-based
robust linkage analysis [9]. Although our test statistic is
identical [10] with that in the regression-based method
[4], our software implementation allows much larger
pedigrees than the Merlin-regress software (the key ele-
ment Cov(πij, πkl) in the test statistic can be conveni-
ently calculated as a function of the pedigree structure
without using the SNP data). Covariates in the linear
regression of the quantitative traits include Age, Smok-
ing status, and the first principal component from a
multidimensional scaling (MDS) structure analysis [11]
in which the family structure is incorporated. These
covariates are adjusted in the robust score test.
We examine the identified linkage region using the

variance component score test as implemented in the
GDT software package (through parameter fastAssoc)
[12]. Although the algorithm implemented in the GDT
package is identical to the one that is implemented in
Merlin [3], the GDT implementation can handle much
larger pedigrees because the (time-consuming) Lander-
Green algorithm [13] is a required component of the
Merlin package but not in GDT. To adjust for the most
significant SNPs, we perform additional association
scans. Finally, we fit a variance component model to
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estimate the unexplained heritability and the effect of
each variant associated with the quantitative trait.

Results and discussion
For the dichotomous trait, Age is the most statistically
significant risk factor (p = 2 × 10−16), with a 10-year
increase in age doubling the risk of being affected.
Smoking is the second largest risk factor. Sex is not sig-
nificantly associated with the affection status. Our NPL
scan on 22 autosomes with adjustment for Age revealed
one significant linkage region on chromosome 4q with
maximum LOD = 3.1 at position 170.34 Mb and a one-
LOD support interval between 142.8 Mb and 177.9 Mb.
The linkage evidence is derived primarily from the lar-
gest family (family 7, consisting of 128 individuals).
Family 7 alone provides the maximum LOD (4.2) in a
region between 153.57 Mb and 177.90 Mb.
The evidence supporting linkage remains strong even

with a variable age threshold. When Age is not incorpo-
rated into the NPL analysis, the maximum LOD is 2.5
in the same region. We also identified a region on chro-
mosome 9 with suggestive evidence in support of link-
age (maximum LOD = 2.9 in a region between 4.5 Mb
and 7.0 Mb). However, this result is sensitive to the age
threshold. When Age is not incorporated into the analy-
sis, the evidence supporting linkage dropped to LOD =
1.7; thus we restricted our subsequent analyses to the
region on chromosome 4q.
To localize the variants that contribute to the evidence

supporting linkage, we first performed TDT and GDT
analyses. No significant association was found (no asso-
ciations have a p < 0.001). Rather than comparing allele
frequency differences between affected and unaffected
individuals, we computed the odds of being affected
among carriers of rare and infrequent variants. We esti-
mated allele frequencies based on all 202 founders, repre-
senting the general population. In the linkage region, four
SNPs had odds greater than or equal to 1: C4S4373 at
167.01 Mb (odds = 9/6, MAF = 0.002), C4S4915 at
176.14 Mb (odds = 10/8, MAF = 0.005), C4S4916 at
176.14 Mb (odds = 9/6, MAF = 0.002), and C4S4935 at
177.85 Mb (odds = 16/15, MAF = 0.002). C4S4373 and

C4S4916 (9 Mb apart) are in complete LD (r2 = 1, D′ = 1)
so only one of these two SNPs needed to be further stu-
died. In addition, C4S4915 and C4S4916 (101 bp apart)
are in strong LD. All C4S4916 variant carriers were also
C4S4915 variant carriers, whereas three of the C4S4915
carriers were not C4S4916 carriers. All C4S4916 and
C4S4935 carriers were private to family 7 and were not
present in other families.
Given this strong LD, we eliminated two SNPs from

the list and examined only two SNPs: C4S4916 and
C4S4935. Only five individuals carry both variants. For
each of the two variants, all carriers share the same
copy of the rare allele (the number of alleles IBD is 1
between any pair of carriers whose relationship is sec-
ond degree and above), indicating that all carriers inher-
ited the rare variant from a common founder in family
7. When we focused only on family 7, by screening all
SNPs, we also found two common variants with a large
affected/unaffected ratio: C4S5105 and C4S5108. These
two SNPs are 240 bp apart and in high LD; we selected
C4S5108 because it provides a slightly higher signifi-
cance. Together, these three variants are able to explain
36 out of 50 affected individuals in family 7. We sum-
marize the three variants in Table 1.
We performed a logistic regression analysis with the

three SNPs included in the model (Table 2). We used a
robust sandwich estimator [14] to account for familial
correlations. The odds ratios of the three variants were
5.35 (C4S4916, at gene ADAM29), 6.80 (C4S4935,
VEGFC), and 1.77 (C4S5108). The LD block between
C4S4373 and C4S4916 (9 Mb apart) together with the
other two variants can explain the large interval of sup-
port in the linkage analyses.
In addition to the SNP-by-SNP association analysis,

the rare variants with larger effect identified through
our screening procedure were collapsed within genes
before the association analysis. We assumed that the
collapsed genotype of an individual was a heterozygote
if the individual was a carrier of any of the rare variants
(a homozygote with two copies of the rare variant is
rather rare). However, the GDT p-values were not sub-
stantially improved using the collapsed alleles.

Table 1 Variants in the chromosome 4q linkage region that are associated with the dichotomous trait in family 7

Family 7 Carriers

C4S4916 C4S4935 C4S5108

Affected Unaffected Affected Unaffected Affected Unaffected Affected Unaffected

N 50 78 9 6 16 15 20 18

Age (SD) 51.5 (21.0) 34.3 (12.9) 45.3 (21.3) 29.8 (9.5) 39.9 (19.8) 26.6 (9.9) 51.5 (21.9) 34.9 (12.5)

Number of smokers 17 15 2 1 4 2 8 3

The three variants explain risk in 36 out of 50 affected individuals in family 7.

Chen et al. BMC Proceedings 2011, 5(Suppl 9):S68
http://www.biomedcentral.com/1753-6561/5/S9/S68

Page 3 of 5



The MDS structure analysis [11] identified population
substructure among founders, and principal components
for nonfounders were approximated according to their
relationship relative to founders. We found that one
principal component was sufficient to represent the sub-
structure in the data. The first principal component was
included in the analysis as a covariate with Age and
Smoking status for the quantitative traits. A polygenic
analysis [15] demonstrated that all quantitative traits
were highly heritable, with h2 = 0.615 (Q1), h2 = 0.432
(Q2), and h2 = 0.697 (Q4). A bivariate analysis identified
a modest genetic correlation between Q1 and Q2 (rG =
0.255), suggesting that these two traits may share genes
in common. There was no evidence of a common
genetic basis between Q4 and the other two quantitative
traits.
The robust quantitative trait linkage analysis identified

two linkage regions for Q1 and one linkage region for
Q2. The first region for Q1 is on chromosome 4q, over-
lapping with the linkage region for the dichotomous
trait. The maximum linkage support is LOD = 14.8 at
167.1 Mb, with a wide region of support (88.0–186.1
Mb with LOD > 3). The second region supporting link-
age for Q1 is on chromosome 6p (LOD = 9.1, 25.6–26.4
Mb) with a large support region (LOD > 3 from 0 to
80.0 Mb). The region supporting linkage for Q2 is on
chromosome 6q at position 143.6 Mb, with a maximum
LOD of 3.7.
Our association scan identified rare variants on chro-

mosomes 4p (C4S4935, at gene VEGFC, MAF = 0.002, p
= 2.3 × 10−15) and 6p (C6S2981, at gene VEGFA, MAF
= 0.007, p = 8.1 × 10−16). A conditional linkage analysis
adjusting for these two SNPs resulted in a maximum
LOD of 0 in these two regions, with no other significant
associations. Table 3 shows the variance component
regression model for Q1.

The estimated heritability was reduced with the two
rare variants included, from h2 = 0.615 to h2 = 0.491,
consistent with the two variants explaining 12.4% of the
total phenotypic variance. In the largest family (family
7), the two variants explained 26.7% of the total pheno-
typic variance (the estimated heritability was reduced
from 0.814 to 0.547). We screened the rare variants
according to the phenotypic distribution of the carriers,
but we did not identify any other rare variants that con-
tributed independently to the variation beyond that
from C4S4935 and C6S2981. On chromosome 6p,
besides C6S2981 with a large effect on Q1, other poten-
tial rare variants include C6S752 at 25.83 Mb, C6S2245
at 31.71 Mb, and C6S2432 at 32.92 Mb; however, all
C6S752 carriers (and all except one C6S2245 carrier)
are also C6S2981 carriers, and all C6S2432 carriers are
also C6S752 carriers. Thus a LD block exists in the
region between 25.83 Mb and 43.85 Mb. This LD block
could explain why the SNP with the strongest effect is
at 43.85 Mb even though the linkage peak is at 26 Mb.
Q2 exhibits significant linkage on chromosome 6q (with

a maximum LOD = 3.7 at 143.6 Mb). By screening the
phenotypic distribution among the carriers, we identified
two rare variants, one less frequent variant, and one com-
mon variant that partly explained the evidence for linkage
in this region: C6S5449 at 133.1 Mb (MAF = 0.005, at
gene VNN3), C6S6047 at 144.8 Mb (MAF = 0.012, at gene
UTRN), C6S6659 at 155.5 Mb (MAF = 0.064, at
gene TIAM2), and C6S6839 at 155.6 Mb (MAF = 0.002, at
gene TIAM2 private to family 4). When the four SNPs
were adjusted in the linkage analysis, the LOD was
reduced from 3.7 to 1.0. Although the four variants were
able to explain most of the linkage in the region, they had
small effects on Q2: They explained only 4.3% of total phe-
notypic variance, and none of the variants were signifi-
cantly associated with Q2.

Table 2 Logistic regression model for the dichotomous trait

Position MAF Gene Estimate SE Odds ratio Z P

Age 0.077 0.007 1.08 11.8 2 × 10−16

Smoke 0.947 0.225 2.58 4.20 2.6 × 10−5

C4S4916 176.135386 0.002 ADAM29 1.68 0.69 5.35 2.43 1.5 × 10−2

C4S4935 177.845572 0.002 VEGFC 1.92 0.46 6.80 4.14 3.5 × 10−5

C4S5108 185.457549 0.131 LOC391722 0.57 0.20 1.77 2.91 3.6 × 10−3

Table 3 Variance component regression model for Q1

Chromosome Position MAF Gene Estimate SE Z P

Age 0.018 0.001 18.00 1.9 × 10−72

Smoke 0.44 0.065 6.77 1.3 × 10−11

PC1 1.91 0.729 2.62 8.8 × 10−3

C4S4935 4 177.845572 0.002 VEGFC 1.64 0.207 7.92 2.3 × 10−15

C6S2981 6 43.854181 0.007 VEGFA 1.24 0.154 8.05 8.1 × 10−16
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The linkage region and the candidate variants estab-
lished in this work could be crucial for future functional
analysis. The LD confounds the choice of functional SNPs.
Functional analysis that follows up on this work could
further determine the functional variants in the region.

Conclusions
Our linkage and association analysis identified two rare
variants (at VEGFC) and one common variant on chro-
mosome 4q for the dichotomous trait, two rare variants
on chromosomes 4q (at VEGFC) and 6p (at VEGFA)
that explain 12.4% (or 26.7% in the largest family) of the
phenotypic variance of trait Q1, and rare variants at
VNN3 on chromosome 6q that explain the linkage to
trait Q2. No linkage regions were identified for trait Q4.
The variant at VEGFC on chromosome 4q underlies
both the dichotomous trait and the quantitative trait
Q1. Compared to the true model that was used to simu-
late the GAW17 family data [2], our linkage and asso-
ciation findings for all four traits are confirmed.
Although linkage could be due to a single variant in a

gene, as in the simulated GAW17 family data, given no
prior knowledge of the genetic model, we should not
rule out the possibility that linkage could be due to mul-
tiple variants in a gene. Therefore screening for rarer
variants with larger effect is crucial for the association
analysis. Our current screening procedure, which is
based on the odds of being affected among carriers, is
somewhat preliminary. Some further improvement
could consider the likelihood of affection status among
carriers (which gives less weight to a small number of
carriers). Bioinformatic annotation (e.g., nonsynonymous
SNPs only) should be incorporated as well.
The variants identified in our analysis are rare in the

general population (e.g., 1 out of 404) and would be diffi-
cult to identify in a population-based study. These var-
iants have a much higher frequency in some families, and
our work shows that the use of linkage and association in
large families provides a powerful way to identify variants
that are responsible for diseases and complex traits.
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