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Abstract

Genetic Analysis Workshop 17 provided simulated phenotypes and exome sequence data for 697 independent
individuals (209 case subjects and 488 control subjects). The disease liability in these data was influenced by
multiple quantitative traits. We addressed the lack of statistical power in this small data set by limiting the genomic
variants included in the study to those with potential disease-causing effect, thereby reducing the problem of
multiple testing. After this adjustment, we could readily detect two common variants that were strongly associated
with the quantitative trait Q1 (C135523 and C135S522). However, we found no significant associations with the
affected status or with any of the other quantitative traits, and the relationship between disease status and
genomic variants remained obscure. To address the challenge of the multivariate phenotype, we used propensity
scores to combine covariates with genetic risk factors into a single risk factor and created a new phenotype
variable, the probability of being affected given the covariates. Using the propensity score as a quantitative trait in
the case-control analysis, we again could identify the two common single-nucleotide polymorphisms (C135523 and
C13S522). In addition, this analysis captured the correlation between Q1 and the affected status and reduced the

problem of multiple testing. Although the propensity score was useful for capturing and clarifying the genetic
contributions of common variants to the disease phenotype and the mediating role of the quantitative trait QT,
the analysis did not increase power to detect rare variants.

Background

Although genome-wide association studies in population
samples may provide information on disease associations
with relatively common genetic polymorphisms, they
give only a tiny glimpse of the underlying functional
variants and networks that might contribute to disease
processes. Especially, rare variants in gene coding
regions that are not in linkage disequilibrium with com-
mon variants are not well represented in these studies.
Therefore exome resequencing projects have emerged to
fill this knowledge gap; these studies focus on the detec-
tion of rare variants in coding regions of the genome. In
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addition, phenotypes are often influenced by many
underlying quantitative traits and environmental expo-
sures that might contribute to disease risk. These factors
might be present in case subjects as well as in control
subjects, therefore complicating the detection of risk
factors. Covariates might introduce bias into the analysis
if they are not evenly distributed between case subjects
and control subjects. As confounding factors they might
also obscure the relationship between risk factors and
disease. New statistical approaches are clearly needed to
address these analytical challenges.

Propensity score analysis is a relatively novel statistical
approach to dimension reduction, bias detection, and
risk estimation in studies where multiple covariates are
present [1]. In clinical trials, the propensity score is
often understood as the conditional probability of being
assigned to a “treatment” group given the subject’s
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observed characteristics. It can be used to balance con-
founding covariates in the treatment and control groups,
therefore reducing the selection bias in observational
studies [2].

Three major applications of the propensity score have
emerged. In the first approach the propensity score is
used to reduce bias in observational case-control ana-
lyses if covariates are not evenly distributed between the
case and control groups. In this context, case and con-
trol subjects could be matched one to one on the pro-
pensity score to create more homogeneous groups for
comparison. This approach often leads to a significant
reduction in sample size through elimination of
unmatched cases [3]. In the second approach based on
the propensity score, strata can be created to allow for
multiple matches and retention of larger sample sizes if
perfect matches cannot be found [4]. Finally, in the
most common application, the propensity score is used
to summarize information on confounding covariates
into a single score, and then the propensity score itself
is included as a covariate in a logistic regression model
predicting the outcome [5].

In this study, we explore the use of the propensity
score as a means to reduce the multiple dimensions of
the phenotype in a case-control design using the exome
sequencing data provided in the framework of the
Genetics Analysis Workshop 17 (GAW17). Because the
outcome is directly influenced by multiple quantitative
traits, we use the propensity score to summarize the
information on the covariates and to create a new quan-
titative trait or outcome variable, the probability of
being affected given the covariates. Then, we compare
this multivariate approach with the univariate approach
in a case-control association analysis after reducing the
multiple-testing problem even further by selecting only
potential disease-causing genomic variants.

Methods

Sample

In the framework of GAW17, exome data for 697 unre-
lated individuals, a simulated phenotype, and environ-
mental exposure were provided to explore and compare
analytical methods for the detection of rare variant/dis-
ease associations [6]. For this analysis we use the repli-
cate data set UNR_PHI. Information on the phenotype
includes sex, age, ethnicity, three normally distributed
quantitative traits related to the disease status (Q1, Q2,
and Q4), and the affected status itself, coded as a binary
variable. Information on smoking status is given as
environmental exposure. The disease phenotype was
created using a liability threshold model, and the disease
prevalence increases with age. The top 30% with the
highest liability (209 subjects) were assigned the affected
phenotype, and the remaining 488 subjects were used as
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Table 1 Distribution of covariates between case and
control subjects

Covariate Case group (N = 209) Control group (N = 488)
% N Mean SD % N Mean SD

Sex =male 450 94 478 233

Smoking 359 75 21.7 106

Q1 091 0.80 -039 081

Q2 0.59 0.99 -025 089

Q4 -080 099 034 078

control subjects. The phenotype variables and environ-
mental exposure were present in both case and control
subjects and were unevenly distributed between the two
groups (Table 1). Seven major ethnic subpopulations are
present in this data set: Caucasians from the CEPH
families (European-descended residents of Utah), Chi-
nese from Denver, Han Chinese, Japanese, Luhya, Tus-
cans, and Yoruba. Each ethnic group contributed
between 10% and 16% of the data. The affected status
was fairly evenly distributed among the different ethnici-
ties with an overall frequency between 30% and 50%.

Propensity score analysis

We use the propensity score to summarize the disease-
related covariates as the predicted probability (p) of
being affected given the covariates (Figure 1). The con-
ditioning variable selection for the propensity score ana-
lysis was performed using stepwise backward regression.
We used the covariates Q1, Q2, Age, Sex, Ethnicity
(coded as integer), and Smoking as predictors and the
binary affection status as the response variable in the
stepwise backward regression. Q4 was found to be a
protective factor. The four risk factors (Q1, Q2, Age,
and Smoking) significantly influenced the affected status.
Because Age did not have a genetic risk factor, we
excluded it from the propensity score calculation. The
selected variables were then included in the calculation
of the propensity score using probit regression in Stata
11 (Table 2). In the propensity score estimation, the
dependent variable was the log odds of being affected,
and the conditioning variables (X) were considered the
independent variables. The propensity score e(x;) for
subject i (i = 1, ..., 697) was defined as the conditional
probability of being affected (W; = 1, case) versus nonaf-
fected (W; = 0, control) given a vector of observed cov-
ariates x;:

e(x;) =Pr(W; =1| X, = x;). ®
SNP selection

The genotype information was based on data from the
pilot3 study of the 1000 Genomes Project [7] provided
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Figure 1 Boxplots of the estimated propensity scores. The boxplots show the distribution of the estimated propensity scores in the affected
and nonaffected groups, as defined in the original data set. The whiskers indicate 1.5 times the interquartile range.

Affected

in the framework of GAW17. Based on autosomal
sequence data, 24,487 single-nucleotide polymorphism
(SNP) genotypes located in 3,205 known genes were
provided. We removed synonymous SNPs and SNPs of
unknown function based on the assumption that these
SNPs were most likely not disease related. Variants with

minor allele frequencies (MAFs) less than 0.001 were
also removed, because those SNPs were present in only
one individual and disease association would have been
difficult to assign under these circumstances. The
remaining 8,079 nonsynonymous SNPs were retained
for further analysis.



Lin et al. BMC Proceedings 2011, 5(Suppl 9):S71
http://www.biomedcentral.com/1753-6561/5/59/571

Table 2 Variable selection by stepwise regression
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Response variable Regressor Coefficient Standard error Probability (chi-square test) Odds ratio
Affected Q1 232 025 122 x 1078 10.22
Q2 239 026 467 x 107 1097
Smoking 1.38 037 0.0001 399
Age 0.14 001 250 x 107 1.15

Genome-wide association analysis

Initially, we performed a univariate genome-wide case-
control association analysis, first on the binary affected
status and then on the quantitative traits Q1, Q2, and
Q4 individually using the correlation trend test under
the additive genetic model as implemented in the soft-
ware program SVS, version 7, from Golden Helix. Popu-
lation stratification present in this data set was
corrected with 10 principal components, as indicated by
the scree plot. Then, we used the propensity score,
defined as the probability of being affected given the
contributing covariates, as the outcome variable in the
case-control association analysis. The Bonferroni
approach was used to correct for multiple testing. In
addition, we performed 10,000 single-value permutations
and full-scan permutations in SVS, version 7, to confirm
our results [8].

Results

In the case-control association analysis, limitations and
advantages of the different approaches became readily
apparent. Selecting only nonsynonymous SNPs that
were present in at least two individuals in the case or
control group increased the power of our analysis by
reducing the multiple testing issues. Following this
approach, quantitative trait analysis for Q1 detected
strong and significant associations with two SNPs:
C13S523 (Bonferroni-corrected p = 7.1 x 10~°, permuta-
tion p = 0.0001) and C13S522 (Bonferroni-corrected p =
4.8 x 1077, permutation p = 0.0001) (Table 3). Both
SNPs had moderate MAFs (0.07 for C13S523 and 0.03
for C13S522) and a high 8 value (0.6). The correlation
between Q1 and the propensity score was 0.67 (p <
0.0001). No significant associations were found with the
affected status itself or with any of the other quantitative
traits after correction for multiple testing.

Table 3 Genome-wide association analysis on univariate and

Case-control association analysis with the propensity
score as the quantitative trait correctly identified the
association with C135523 (p = 2.3 x 10~°, Bonferroni-
corrected p = 1.8 x 10™°) and C13S522 (p = 2.3 x 107,
Bonferroni-corrected p = 0.0018) mediated through Q1
(Table 3). Permutation analysis with 1,000 permutations
revealed a permutation p = 0.001 for both associations.
Both SNPs were located in the gene FLT1. Even though
we were able to capture the correlation between Q1 and
the affected status and to detect true associations with
common variants (no false-positive signals were found
at the genome-wide level of significance), our approach
was unable to detect additional rare variants. The analy-
sis missed 69 true disease-related SNPs with MAFs
between 0.17 and 0.00071, and B values between 1 and
0.03, including nine additional SNPs in the gene FLT1.

A common approach to rare genomic variants is the
selection of variants that are present only in case sub-
jects. Taking this approach, we found 421 SNPs that ful-
filled this criterion; 16 of those were present in only one
case subject. Out of 405 SNPs present in at least two
case subjects, only 5 SNPs in five different genes were
associated with disease according to the model and 400
SNPs were false positives. The most obvious contribut-
ing factor to the inflation of rare variants is ethnic
admixture in this data set. Even though we attempted to
correct for this problem using principal components
analysis, it could not be completely eliminated.

Discussion

Composite phenotypes that are strongly influenced by
multiple quantitative traits with specific genetic risk fac-
tors are a frequently encountered phenomenon in
genetic studies of common complex disorders. Often
these traits are present in case subjects as well as in
control subjects, and they might introduce bias or even

multivariate phenotypes

Phenotype SNP Correlation trend test p-value Bonferroni-corrected p-value Permutation p-value MAF
Affected - - - -
Q1 C135523 88 x 107" 7.1 x107° 0.0001 007
C135522 60 x 107" 48 x 1077 0.0001 003
Q2 - - - -
Q4 - - - -
Propensity score C135523 23%x 1077 18%x107° 0.0001 0.07
C135522 23%x 107 0.001 0.0001 0.03
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be confounding factors in the estimates of disease asso-
ciations. A joint estimate of these covariates is rarely
included in genome-wide association studies.

Propensity score analysis has emerged as an approach
to dimensionality reduction. Because the contributing
quantitative traits are present in both case and control
subjects, a probabilistic approach that summarizes the
multiple risk factors is appropriate, particularly because
the genetic risk factors predominantly influence the
affected status through the quantitative traits. Using
propensity score analysis, we were able to detect two
SNPs associated with the affected phenotype that were
obscured when only the affected phenotype was used as
the outcome, and we were able to clarify the relation-
ship between the quantitative traits and the phenotype.

The application of the propensity score in the more
traditional sense as a means to reduce bias was limited
in this data set. After all, potentially confounding covari-
ates were not the focus of this simulation. In fact, most
covariates were directly and causally related to the
affected status. Attempts to match case and control sub-
jects on the propensity score either by one-to-one
matching or by stratification resulted in a significant
reduction in sample size as a result of a large number of
unmatched observations. The resulting loss of power
made the detection of significant associations impossi-
ble. Using the propensity score as a covariate after inclu-
sion of all known contributing variables eliminated all
the genetic contributions to the affected status mediated
by the quantitative traits.

Still, using the propensity score as a dimensionality
reduction tool has several advantages over multivariate
regression. Multivariate regression models are often con-
cerned with finding parsimonious models using only a lim-
ited number of covariates to avoid overparameterization.
In the propensity score estimation, the number of covari-
ates that can be included is not limited by the model. Inter-
actions and nonlinear terms can easily be incorporated.

A commonly encountered problem in case-control
association studies is false-positive association resulting
from nonrandom differences between case and control
subjects that are not related to the presence of the dis-
ease itself [9,10]. Population stratification resulting from
admixture of different ethnic groups with differences in
allele frequencies or uneven distribution of sex and
other confounding covariates can introduce biases that
are frequently not addressed in the study design. In the
GAW17 data set, ethnicity was such a confounding fac-
tor. Ethnicity itself was not related to the disease status;
however, the presence of seven different ethnicities
introduced a large number of rare and private mutations
in the data set. The overwhelming number of rare and
private variants that were not related to disease in only
the case group cautions against the assumption in
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studies involving independent individuals and complex
disorders that presence in case subjects and absence in
control subjects is evidence of pathogenicity. This data
set demonstrates that ignoring design issues, particularly
population admixture and unbalanced covariates
between case and control subjects, can introduce noise
into the data and can complicate the discovery of true
disease associations. Post hoc statistical analysis cannot
always correct for these design issues.

Sequencing data sets still have a relatively small sam-
ple size that limits the power of a study to detect asso-
ciations with rare variants in a traditional case-control
design. Therefore, it might be useful to identify genomic
variants that are more likely to cause disease, such as
nonsynonymous variants and truncating and non-sense
mutations in coding regions, through resequencing
approaches. Focus on those variants would decrease the
multiple testing problem and increase the power to
detect disease-associated variants with large effect. How-
ever, realistic expectations should be in place when deal-
ing with these data. Case-control association designs
might not be the appropriate approach to rare variants,
particularly under genetic heterogeneity. Family-based
resequencing approaches might be more appropriate
under these conditions.

Conclusions

Propensity score analysis could be a useful tool in genetic
case-control association analyses. Even though we admit
that this simulated data set had limitations for the mean-
ingful use of this method, our study demonstrates an
application to the dimensionality reduction of pheno-
types that are influenced by multiple correlated traits
with strong genetic risk factors. This approach might
give some advantage in settings in which issues related to
multiple testing arise. Potential problems include the
selection of covariates. Our approach did not increase
the power to detect rare variants, which remains a pro-
blem that is difficult to address in case-control studies.
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