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Abstract

Large-scale, deep resequencing may be the next logical step in the genetic investigation of common complex
diseases. Because each individual is likely to carry many thousands of variants, the identification of causal alleles
requires an efficient strategy to reduce the number of candidate variants. Under many genetic models, causal
alleles can be expected to reside within identity-by-descent (IBD) regions shared by affected relatives. In distant
relatives, IBD regions constitute a small portion of the genome and can thus greatly reduce the search space for
causal alleles. However, the effectiveness of this strategy is unknown. We test the simulated mini-exome data set in
extended pedigrees provided by Genetic Analysis Workshop 17. At the fourth- and fifth-degree level of relatedness,
case-case pairs shared between 1% and 9% of the genome identical by descent. As expected, no genes were
shared identical by descent by all case subjects, but 43 genes were shared by many case subjects across at least
50 replicates. We filtered variants in these genes based on population frequency, function, informativeness, and
evidence of association using the family-based association test. This analysis highlighted five genes previously
implicated in triglyceride, lipid, and cholesterol metabolism. Comparison with the list of true risk alleles revealed
that strict IBD filtering followed by association testing of the rarest alleles was the most sensitive strategy. IBD
filtering may be a useful strategy for narrowing down the list of candidate variants in exome data, but the optimal
degree of relatedness of affected pairs will depend on the genetic architecture of the disease under study.

Background

Single-nucleotide polymorphism (SNP) microarrays used
in genome-wide association studies have been designed
to interrogate SNPs with minor allele frequencies
(MAFs) greater than or equal to 5%. Genome-wide asso-
ciation studies for a wide variety of complex diseases
explain only a small proportion of disease heritability.
The so-called missing heritability can be attributed to
uncommon and rare variants that are not well interro-
gated by SNP arrays [1,2]. This observation, combined
with major advances in large-scale sequencing methods,
has fueled the use of whole-exome and whole-genome
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sequencing to identify risk variants in common diseases.
Using this approach, researchers have successfully iden-
tified rare variants involved in Mendelian disorders
[3-5], but the number of candidate variants uncovered
in these studies has been unexpectedly large, and close
to 10,000 variants per individual may be functional.
Because common diseases are thought to be genetically
heterogeneous [2,6], narrowing down the list of candi-
date variants to a few causal variants is a challenging
process, and the best strategy remains unclear.

To identify loci that encode potential causative alleles,
we test the strategy of identity-by-descent (IBD) filter-
ing, that is, isolating IBD regions shared by affected
individuals. In distant relatives, IBD regions constitute a
small portion of the genome, effectively narrowing the
search space for disease alleles under a variety of genetic
models [3,6]. IBD analysis may be sufficiently robust to

© 2011 Akula et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:akulan@mail.nih.gov
http://creativecommons.org/licenses/by/2.0

Akula et al. BMC Proceedings 2011, 5(Suppl 9):576
http://www.biomedcentral.com/1753-6561/5/59/576

detect loci involved in genetically heterogeneous traits
where traditional genetic linkage analysis has failed
[3-5,7]. However, the effectiveness of this strategy in
the face of high genetic heterogeneity is largely
unknown. We apply this strategy to the mini-exome
data set of eight large pedigrees in 200 simulated phe-
notype files provided by Genetic Analysis Workshop
17 (GAW17) (http://www.gaworkshop.org/gawl7/) [8].
When combined with typical filtering and family-based
association testing (FBAT), IBD filtering analysis iden-
tified five candidate genes that were previously shown
to be involved in triglyceride, lipid, and cholesterol
metabolism.

Methods

We analyzed the mini-exome data in the GAW17 family
data set, which consists of 697 individuals in eight
extended pedigrees. We did not have any knowledge of
the actual risk alleles or phenotypes; that is, we did not
request the causal genes and markers (answers) from
GAW17 until we had completed our analysis.

Identity by descent

Two or more alleles are identical by descent if they are
inherited from the same ancestor. BEAGLE, GERM-
LINE, and PLINK are some statistical tools that are
commonly used to calculate IBD between individuals
[9-11], but in the current analysis we use IBD regions
provided in the GAW17 simulated data. According to
the GAW17 instructions, an IBD score of 0 indicates no
sharing, an IBD score of 0.5 indicates sharing of one
allele, and an IBD score of 1 indicates sharing of two
alleles. However, because without inbreeding only full
siblings can share two alleles identical by descent at a
locus, an IBD score of 1 does not occur in the GAW17

Page 2 of 7

pedigrees; hence we consider only IBD scores of 0.5 in
our analysis.

The percentage of the genome shared (g) decreases as
the number of meioses (1) increases:

1
§=om- 1)

First-degree relatives (parent-offspring) share 50% of
their genomes, second-degree relatives (grandparents-
grandchildren, avuncular pairs) about 25%, third-degree
relatives, such as first cousins, about 12.5%, fourth-
degree relatives about 6.25%, and fifth-degree relatives
about 3.13%. Although these percentages are relatively
stable for first-degree relatives, they tend to vary for
more distant relatives because of the stochastic nature
of recombination events [12].

The first unknown factor involves the optimal degree
of relatedness. More closely related cases will likely
share more of the same risk alleles but will also share a
larger portion of the genome, with many potential
variants. More distantly related individuals will share
less of the genome but may also carry distinct sets of
risk alleles as a result of segregation, the introduction of
risk alleles by married-in relatives, and new variants.
Because these parameters are generally unknown and
because the number of candidate functional variants
carried by each individual is large, we opt for a strategy
of stringent IBD filtering, focusing on relative pairs who
share less than 10% of the genome, corresponding to
fourth- and fifth-degree relatives.

We confirmed the proportion of IBD sharing in the
mini-exome data by calculating the total IBD score
between all affected pairs of individuals in pedigree 1 of
phenotype file 1 (Figure 1). From this analysis, with 95%
confidence, we estimated that fourth- and fifth-degree
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Figure 1 Fraction of the genome shared between pairs of individuals in pedigree 1 of phenotype file 1 by known number of meioses
shown on the pedigree. The results correspond closely to the expected values of the power function, 1/2™.
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relatives shared between 1% and 9% of the genome. Using
these bounds, we selected 95 case-case relative pairs (67
different individuals) in phenotype file 1, excluding any
case-case pairs with IBD sharing greater than 10%. We
then calculated the number of genes and markers shared
by these individuals. The GAW17 mini-exome data con-
sist of 24,488 SNPs in 3,205 genes. We tried to identify
SNPs and genes that were shared by all 67 affected indivi-
duals in phenotype file 1 but found none.

For each replicate, we ranked genes by the number of
case subjects for which the genes had an IBD score
greater than 0 (Table 1). We then moved down the list
until the number of shared genes fell below 100 and
included all those genes in the IBD list for that replicate.
We call this “most cases” scoring to distinguish it from

Table 1 IBD filtering in phenotype file 1
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“max cases” scoring, in which we selected the gene or
genes shared identical by descent by the maximum
number of case subjects. As shown in Table 1, 3,205
genes were shared by at least 2 case subjects, 51 genes
were shared by up to 31 case subjects (“most cases”),
one gene was shared by 34 case subjects (“max cases”),
and no genes were shared by more than 34 case sub-
jects. These thresholds were chosen because we could
not assume locus homogeneity and wished to minimize
the risk of falsely excluding genes that carried true cau-
sative alleles. We later evaluated the effects of these
thresholds on identifying the true causal genes in the
simulated data (see Discussion and Conclusions section).

We repeated this approach for the remaining 199
replicates and then ranked each gene based on the

Individuals Genes shared Total SNPs Rare SNPs (MAF < 0.1) Synonymous Non-synonymous
+2 3,205 24,488 21,605 12,611 8,994
+3 3,193 24,353 21,482 12,528 8,954
+4 3,193 24,353 21,482 12,528 8,954
+5 3,020 23,531 20,730 12,104 8,626
+6 3,018 23,529 20,730 12,104 8,626
+7 2,985 23,336 20,553 11,995 8,558
+8 2,940 23,149 20,383 11,872 8511
+9 2,924 23,056 20,308 11,830 8478
+10 2,861 22,852 20,132 11,730 8402
+11 2,844 22,741 20,035 11,667 8,368
+12 2,635 21,353 18,844 11,026 7818
+13 2,564 20914 18,451 10,815 7,636
+14 2,352 19,805 17,550 10,315 7,235
+15 2,221 18,654 16,554 9,731 6,823
+16 2,004 16,837 15,005 8,807 6,198
+17 1,780 15,433 13,748 8,085 5,663
+18 1,665 4,358 12,821 7,551 5,270
+19 1,532 13,125 11,709 6,868 4,841
+20 1,386 12,106 10,786 6,336 4450
+21 1,236 10,857 9,676 5,681 3,995
+22 1,062 9,332 8327 4,871 3,456
+23 906 8,133 7,280 4,251 3,029
+24 709 6470 5811 3,393 2418
+25 622 5,520 4,959 2,858 2,101
+26 531 4,705 4,229 2,441 1,788
+27 450 4,352 3911 2,258 1,653
+28 284 2,857 2,580 1,490 1,090
+29 195 2,090 1,903 1,100 803
+30 120 1,666 1,528 893 635
+31 51 867 789 452 337
+32 24 460 424 249 175
+33 1 16 16 12 4
+34 1 16 16 12 4
+35 0 0 0 0 0

Highlighted bold rows indicate the “most cases” and “max cases” respectively.
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number of replicates in which it was selected [4,5].
Intuitively, this strategy should be quite robust to allelic
heterogeneity but less robust to locus heterogeneity. If
locus heterogeneity is expected to be high, one could
retain genes that overlap with IBD regions in as few as
one case-case pair and then use the detected genes from
each family as an estimate of the intrafamilial locus
heterogeneity.

In summary, our strategy involved the following steps:
(1) calculating the IBD score between all pairs; (2)
selecting affected pairs; (3) choosing case-case pairs that
share between 1% and 9% of the genome; (4) selecting a
list of genes shared by most case subjects; (5) repeating
steps 1 through 4 for each of the 200 replicate files; (6)
ranking each gene based on the number of replicate
files from which it was detected.

Variant filtering

Because the simulated data set was not well suited for
sophisticated filtering of variants, we used the com-
monly applied filters for the MAF in the 1000 Genomes
Project data and determined the potential functional
impact (nonsynonymous variants). In this case, we
applied a 10% MAF threshold, because, in practice, ear-
lier genome-wide association studies could be expected
to find more common variants if they conferred reason-
able disease risk.

Family-based association test

To exclude variants that were clearly not associated with
the phenotype, we performed an FBAT analysis (http://
biosunl.harvard.edu/~fbat/fbat.htm) on all 200 replicate
files. We included markers that were informative in at
least three out of eight pedigrees. Because there are
multiple nuclear families in a pedigree, we used the
FBAT option -e, as recommended by the software devel-
oper. We then ranked variants by the minimum FBAT
p-value observed across the 200 replicate analyses. We
also performed an FBAT -e analysis after setting the
number of informative families to 5 and 8 (8 being the
maximum number of pedigrees in the GAW17 data), in
order to evaluate the effect of this parameter on the
identification of true causal alleles (see Discussion and
Conclusions section).

Results

IBD filtering identified genes that were shared among
fourth- and fifth-degree related case subjects in multiple
phenotype files. Out of 3,205 genes in the mini-exome
data, 1,798 were shared identical by descent by most
case subjects in at least one phenotype file. Of these, 43
genes were selected based on sharing by most case sub-
jects in at least 50 phenotype files (Table 2, IBD analy-
sis). The list of 43 genes is shown in Table 3. Figure 2
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Table 2 Summary of IBD analysis and FBAT analysis

IBD analysis FBAT analysis
Total genes: 3,205 Total SNPs in 43
genes: 956
Genes shared by most people in at least 1 SNPs with < 10%
phenotype file: 1,798 MAF: 876
Genes seen in at least 50 phenotype files: 43 Nonsynonymous
SNPs: 525

FBAT p < 0.05: 12

shows the distribution of IBD sharing across the 200
replicate files.

Variant filtering revealed that the 43 top-ranked genes
contained 956 variants. MAF and functional filtering
reduced this list to 525 variants in 32 genes (Table 2,
FBAT analysis).

Of the 525 variants selected for FBAT analysis, many
were seen in only a single family and some were seen in
only a few individuals. Although these variants could be
true risk alleles, their contribution is impossible to
assess in a small sample. Thus we focused on the
variants that were seen more frequently in this sample
(at least three out of eight families). Of these, 12 var-
iants were associated with the phenotype at a minimum
p-value less than 0.05 in at least one replicate (Table 2,
FBAT analysis). These variants represented five genes:
APOB, TTLL4, ACCN4, COL6A3, and TG (Table 4).
The first two columns in Table 4 show the names of the
genes followed by the number of replicates in which the
genes were selected in the IBD analysis. For example,
APOB was selected based on case-case sharing in 87
replicates. The remaining columns in Table 4 show the
FBAT analysis results for the rare, nonsynonymous
variants in those genes that were informative in this
data set.

Discussion and conclusions

We assume that the GAW17 data set is genetically het-
erogeneous. Therefore not all affected individuals share
the same causal genes (locus heterogeneity), nor do they
share the same variants (allelic heterogeneity). We
addressed the locus heterogeneity problem by using IBD
analysis between distantly related case subjects, selecting
genes that were often but not always shared by case
subjects. To address allelic heterogeneity, we considered
all variants that passed our frequency and functionality
filters and all variants located in genes selected by IBD
filtering. Larger sample sizes allowed a more liberal IBD
filtering, increasing the robustness of this strategy in the
face of locus heterogeneity.

Although the IBD filtering did substantially reduce the
candidate gene list, there were still 43 candidate genes
with many sequence variants. The top hits of the IBD
filtering alone were F5 (shared by case-case pairs in 140
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Table 3 Top 43 genes from the IBD analysis

Gene Observed number of phenotype files
F5 140
NF2 136
GC 112
ZNF3 107
TG 88
APOB 87
UGT1A1 86
SH3RF1 84
ADAM29 81
KIAA1712 81
MTERFD2 73
EPHA4 73
HDAC4 73
LOC100129675 73
MYEOV2 73
NDUFA10 73
COL6A3 72
COPS8 72
VEGFC 69
ACCN4 68
DES 68
SLC4A3 68
TMEM198 68
TTLL4 67
CDH1 67
FN1 67
RNF25 67
TLLT 66
RNMT 65
TKTL2 65
ANP32C 63
LOC100128186 62
NEIL3 61
TMBIM1 61
ERBB4 60
SLC6A3 60
SPHKAP 60
TERT 60
PALLD 58
PLEKHG4B 57
ZNF519 56
XRCC5 55
CA2 53

The bold row signifies “VEGFC" a gene that was simulated to be one of the
causal genes in GAW17 data.

phenotype files) and NF2 (136 files). Neither of these
genes contained variants that were seen in more than a
few case subjects. Thus it was important to work down
the list to identify variants that were more frequent in
this data set. A larger data set would have allowed more
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discovered variants to be included in the analysis, poten-
tially increasing robustness to allelic heterogeneity.

Filtering of variants based on MAF and potential func-
tion cut the list in half, but it is not clear whether this
filtering method will be ideal for common complex
traits. Depending on penetrance, true risk alleles might
be fairly common in comparison data sets, especially
those consisting of control subjects who have not been
screened for the trait of interest. One could set the
MAF threshold higher than 10% and exclude variants
that are homozygous in a few control subjects, because
these might be more likely to produce a recognized phe-
notype in control subjects. Similar arguments can be
made about functionality. In practice, most studies of
complex traits aim to include variants with regulatory or
splicing effects, which we could not estimate in the
GAW17 data set.

Family-based association testing was the final compo-
nent of our strategy, aimed at eliminating variants (and
genes) that were clearly not associated with the pheno-
type. In real-world data, power analysis would guide the
choice of appropriate p-value thresholds for the family-
based association testing, and candidates would gener-
ally be further evaluated in large case-control samples.
Because many rare variants are singletons, nominated
genes would typically be resequenced in additional case
and control subjects to test the hypothesis that the
genes harbor additional deleterious variants in case sub-
jects that might not have been observed in the original
study. See Krawitz et al. [5] for a successful example of
this strategy.

Our analysis nominated a set of five candidate genes,
APOB, TTLL4, ACCN4, COL6A3, and TG, three of
which are implicated in cardiovascular disease. Apolipo-
protein B (APOB) is the main apolipoprotein component
of low-density lipoproteins and is known to play a role
in atherosclerotic plaque formation [13]. ACCN4
(amiloride-sensitive cation channel 4) encodes an
amiloride-sensitive sodium channel, and amilorides are
often prescribed to control heart failure. The extracellu-
lar matrix of arteries and the myocardium have high
levels of collagen fibers, and COL6A3 (alpha 3 type VI
collagen isoform 5 precursor) encodes one of the alpha
chains of collagen that participates in plaque and clot
formation [14].

We necessarily used several arbitrary thresholds in this
exercise. Ideally, the optimal thresholds would be
selected at the start of a sequencing experiment, guided
by the available sample size, replication resources, and
educated guesses about the genetic architecture of the
disease target.

At the conclusion of the GAW17 meeting, we
requested the list of true causal genes so that we could
assess the effect of our threshold choices on the
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Figure 2 Histogram showing number of genes shared identical by descent by “most cases” across 200 replicates

Table 4 Candidate genes and variants

IBD analysis FBAT analysis
Gene Number of phenotype files Marker MAF Chromosome  Position Gene SNP type Allele FBAT p-value
APOB 87 25192 0079627 2 21078786 APOB  Nonsynonymous T 0.015
APOB 87 25193 0.041607 2 21078990 APOB  Nonsynonymous G 0.047
TTLL4 67 C256005 0033716 2 219311896  TTLL4  Nonsynonymous A 0.035
ACCN4 68 C256142  0.008608 2 220105317 ACCN4  Nonsynonymous A 0.031
COL6A3 72 C257528 0.078192 2 237926760 COL6A3  Nonsynonymous A 0.029
G 88 (854237 0.083931 8 133969677 G Nonsynonymous A 0.046
TG 88 (854289  0.01363 8 133979643 TG Nonsynonymous A 0.030
TG 88 (854456  0.040172 8 134022858 TG Nonsynonymous G 0014
TG 88 854457  0.040172 8 134022922 G Nonsynonymous @ 0014
TG 88 854475 0012195 8 134030339 G Nonsynonymous G 0.033
TG 88 (854540  0.096844 8 134050942 G Nonsynonymous @ 0.041
TG 88 (854594  0.02726 8 134093337 TG Nonsynonymous G 0.044

results. The list of candidate genes identified by our
IBD analysis included VEGFC, one of the genes simu-
lated to harbor causal alleles in the GAW17 data
(Table 3). However, VEGFC contained only one variant
that was too rare to be informative in our FBAT analy-
sis. A larger data set might allow more discovered var-
iants to be considered, perhaps by grouping within
each gene, potentially increasing robustness to allelic
heterogeneity.

More generally, as shown in Table 5, strict IBD filter-
ing that selected genes shared by the maximum number
of case subjects in each replicate followed by FBAT
analysis was the most sensitive strategy. However, the
true-positive rate of 4.6% was still disappointing.

Table 5 Effect of IBD filtering and allele frequency
thresholds on sensitivity

FBAT -e Min Size

IBD threshold
“Most cases” (TP%) “Max cases” (TP%)

3 13/380 (34) 7/151 (4.6)
5 11/354 (3.1) 6/146 (4.1)
8 6/240 (2.5) 4/99 (4.0)

Results of our analysis were compared to the list of true causal genes
provided after the conclusion of the GAW17 meeting. “Most cases” refers to
the more liberal IBD filtering. “Max cases” refers to the strict IBD filtering that
includes genes shared by the maximum number of case subjects in each
replicate. “Min Size” refers to the minimum number of nuclear families that
carried each candidate variant. TP% is the proportion of identified genes that
were actually present on the list of true causal genes, corresponding to a
typical measure of sensitivity.
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This highlights the importance of following up any dis-
covery steps with replication testing in much larger
samples.

These results suggest that IBD filtering is a promising
strategy for narrowing down the list of candidate var-
iants in exome data. Although the sensitivity was low in
the simulated GAW17 data, IBD filtering should be par-
ticularly effective in founder populations where rare dis-
ease alleles are more likely to be inherited from a
common ancestor. More theoretical work is needed to
determine the optimal degree of relatedness at which
case-case pairs should be selected and to identify the
best strategy for ranking variants in IBD regions for
further study. Much will depend on the genetic architec-
ture of the disease under study.
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