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Abstract

How various genetic effects in combination affect susceptibility to certain disease states continues to be a major
area of methodological research. Various rare variant models have been proposed, in response to a common
failure to either identify or validate biologically driven causal genetic variants in genome-wide association studies.
Adopting the idea that multiple rare variants may effectively produce a combined effect equal to a single common
variant effect through common linkage with this variant, we construct a pathway-based genetic association
analysis model using both common and rare variants. This genetic model is applied to the disease status of
unrelated individuals in replication 1 from Genetic Analysis Workshop 17. In this simulated example, we were able
to identify several pathways that were potentially associated with the disease status and found that common
variants showed stronger genetic effect than rare variants.

Background
In the search for causal variants, an abundance of
research has been focused on relatively frequent variants
that are assumed to be located near the true causal var-
iants. This focus is based on a popular hypothesis that
common single-nucleotide polymorphisms (SNPs) con-
tribute to the genetic effects underlying complex traits,
where, traditionally, common SNPs are defined to be
the ones with minor allele frequency greater than 1%.
Genome-wide association study is an approach that
scans markers across the whole genome. It has been
proven to be quite successful, as more than 2,000 com-
mon variants have been identified to be associated with
common diseases or related traits. Once the genetic
markers have been found, extensive resequencing of the
nearby sites is done to seek out the true causal SNPs.
This step, however, has not been as successful as gen-
ome-wide association study, which raises the question of
the common trait/common variant assumption [1-3].
Dickson et al. [2] proposed the synthetic rare variants
effects model, which provides an alternative explanation

to the significance of found markers. That is, the com-
mon variant association signal may actually represent
effects from multiple rare variants, a situation that hap-
pens when the multiple rare variants occur, by chance,
more frequently in association with one allele at the sig-
nal common SNP than with the other. Two scenarios
are possible for the rare variant effect. In the first sce-
nario, the true genetic effects are caused solely by rare
SNPs; in the second scenario, both common and rare
SNPs contribute to the disease status or related traits.
To address this situation, we model the effects of rare
and common variants both separately and in combina-
tion, with the common goal of uncovering the true
genetic effects.
Because of the low penetrance of rare variants, the

power to detect the effect of a single rare SNP is small.
Modeling groups of rare SNPs is an efficient way to
detect rare variant effects. Groups may refer to genes
or pathways or other biologically meaningful units.
A genetic pathway is a set of interactions between sev-
eral genes that function together to affect a disease or
trait [4]. Experiments from genome-wide genetic studies
have demonstrated that modeling at the pathway level
(i.e., considering genes within a pathway together) may
improve the detection of genetic effects [4,5].
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Using the mini-exome data provided by Genetic
Analysis Workshop 17 (GAW17), we aim to analyze the
effects from rare and common variants at the pathway
level to identify potential disease-associated pathways.

Methods
Data description
The mini-exome data provided by GAW17 consists of
697 unrelated individuals from the 1000 Genomes Pro-
ject. Phenotypes of these individuals include one binary
trait of affection status and three continuous quantita-
tive traits. Genetic information is available on 24,487
SNPs distributed across all autosomal chromosomes and
comes from 3,205 genes. Clinical factors include age,
sex, smoking status, and ethnic origin, where ethnic ori-
gin is reclassified into Asian, African, and European.
Two hundred replications of the data were generated,
with the genetic information, age, sex, and ethnic origin
held fixed while the phenotype variables and smoking
status were simulated across the 200 replications.

Analysis
We used PLINK [6] to provide summary statistics for
each of the SNPs, including minor allele frequency, gen-
otype distribution, and Hardy-Weinberg equilibrium
(HWE) test. The SNPs that failed the HWE test (p < 1
× 10−6) in each of the subpopulation groups were
excluded from further analysis. We applied nonadjusted
logistic regression models to each of the SNPs and the
disease status before further modeling was carried out.
To determine whether our models should adjust for the
quantitative effects in addition to the other clinical fac-
tors, we explored the associations between the traits and
the disease status using logistic regression.
For each individual i, i = 1, …, 697, we define the dis-

ease status as the outcome as follows:
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We applied the genetic model to the pathway level and
defined risk scores representing either rare or common
variant effects of each pathway using a collapsing meth-
ods (described in more detail later), where a threshold of
1% for the minor allele frequency was used to divide rare
and common variants. We then combined the two differ-
ent risk scores into a single risk score to assess whether a
pathway was associated with the disease. We ran unad-
justed and adjusted models. The unadjusted model uses
only the genetic risk score in a model, and the adjusted
model uses the covariates Age, Sex, Smoke, and the
population in the model as well. To be more specific, we
describe our modeling steps in what follows.

Step 1. Apply the unadjusted logistic regression
model to the rare variants effect. We construct a risk
score, defined as the count or proportion of minor
alleles of the rare variants within a pathway, to represent
the rare variants effect [7]. We denote this risk score
RSrare.
Step 2. Apply the adjusted logistic regression model

to the common variants effect. First, we use the least
absolute shrinkage and selection operator (LASSO) [8]
for logistic regression to select candidate common var-
iants within each pathway, where the selection is done
by always incorporating other covariates, including Age,
Sex, Smoking status, population origin, and the three
quantitative traits. That is, we fit:
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where XC ,j is the jth common SNP in a specific
pathway, and:
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represents the adjusted covariates in the model. The
model selection is based on maximizing the correspond-
ing likelihood function subject to ∑ j |gj| <l, where l is
a LASSO penalty parameter. Some of the estimated
regression coefficients ĝ j can be 0, which implies that
the corresponding common SNP does not contribute to
the outcome. The process leads to variable selection of
the associated common variants.
If none of the common variants are selected, then we

conclude that no common variants effect is identified
for this pathway. For the pathways with selected com-
mon variants, we then define a risk score as the summa-
tion of risk alleles (risk alleles are determined through a
univariate association analysis on each SNP). This risk
score differs from the risk score for rare variants in that
effect directions have been accounted for [9]. We denote
this risk score as RScommon.
Step 3. Apply both the unadjusted and adjusted

logistic regression models to the combined rare and
common variants effect. The combining is done by
using a weighted summation of the risk scores for rare
and common variant effects. To decide the weights, we
dichotomize the rare and common variant risk scores
using their medians and then fit logistic regression
models on the dichotomized variables to estimate the
odds ratios. We then use the estimated odds ratios as
the weights. Specifically, the final risk score for a given
pathway is:
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where ORr is estimated from:
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and equals exp ( )b rare ; sign(ORr − 1) is 1 if ORr > 1
and 0 otherwise. I(·) is an identity function. The defini-
tions of the common variant risk component are similar.
Step 4. Correct for inflated type I error. We realized

that the pathway effect selected from step 3 may have
inflated type I error as a result of model selection. The
asymptotic p-value based on standard normal distribu-
tion of the Z statistics does not consider such inflated
type I error. To evaluate the pathway effect, we generate
an empirical distribution based on the Z statistics of
testing RSfinal. Such empirical distribution use all the Z
statistics from step 3, except the top k pathway Z statis-
tics (i.e., k = 10). Then we estimate empirical p-values
for the Z statistics of the top k pathway using this
empirical distribution. Such empirical p-values can be
used to evaluate whether the top pathway effects satisfy
the same distribution as the rest of the pathway effect.
Pathways information is obtained in two steps: (1) by

mapping all SNPs to genes based on the SNP informa-
tion provided by GAW17; and (2) by mapping genes to
pathways, where genes resulting from step 1 had been
identified in predefined gene sets or pathways (http://
www.broad.mit.edu/gsea/msigdb/index.jsp). To ensure
that each pathway has a reasonable number of variants,
in the analysis we use only gene sets or pathways with
at least 5 genes (1,126 pathways).
We perform additional analyses to detect the differ-

ence of disease prevalence across different populations
(Asian, African, and European) to find out whether the
nature of the disease is population specific. For those
pathways identified as associated with the disease status,
we use a linear regression model to assess whether the
genetic risk score across different populations is differ-
ent. We apply a multivariate model to disease status on

population and to those identified pathway risk scores
that have a different profile across population. We apply
the likelihood ratio test to test whether the population
effect remains significant.

Results
Quality control
We removed 1,314 SNPs for which the HWE test p-
value was smaller than 1 × 10−6. This left us with
23,173 autosomal SNPs and 697 samples for the follow-
up analysis. Univariate modeling for the effect of a sin-
gle SNP yielded no significant signal at an adjusted sig-
nificance level of 0.05/24,487 = 2.0419 × 10−6 after all
clinical factors (Age, Sex, Smoking status, Population)
were accounted for.

Pathway analysis
Of the 1,126 pathways, 772 had at least one common
variant that was selected by the LASSO. Of these, 152
pathways had significant common variant effects (p <
6.47 × 10−5, corresponding to a Bonferroni-corrected
significance level of 0.05). In comparison, only two path-
ways reached Bonferroni-adjusted significance (p = 1.74
× 10−5 and 4.78 × 10−5, respectively) for their rare var-
iant effects. The strongest signal of rare variant effect
came from a pathway known as PENG_GLUTAMI-
NE_UP (p = 1.74 × 10−5, OR = 1.422); however, signifi-
cant effects from common variant(s) of this pathway
were only suggestive (p = 0.01, OR = 1.16).
When common and rare variant effects were com-

bined, 162 out of the 772 pathways had a suggestive
signal (unadjusted p < 6.47 × 10−5). There was a leap
in p-values assessed through combined effects (unad-
justed) between the seventh and eighth most signifi-
cant pathways, which led us to assess empirical p-
values for the top seven pathways. Statistics directly
from the model for the seven pathways are given in
Table 1. Rare variants generally had a much weaker

Table 1 p-Values and ORs for different effects

Combined effects

Rare variant effects,
unadjusted

Common variant effects,
unadjusted

Unadjusted Adjusted by clinical
factorsa

Pathway p-value OR p-value OR p-value OR p-value OR

STEMCELL_EMBRYONIC_UP 0.001 1.09 2.28 × 10−20 1.34 1.65 × 10−19 1.06 4.83 × 10−22 1.1

LEE_TCELLS2_UP 0.012 1.06 7.44 × 10−19 1.33 2.74 × 10−16 1.05 2.09 × 10−21 1.09

DAC_PANC_UP 0.39 1.06 3.44 × 10−16 1.3 1.72 × 10−15 1.07 1.79 × 10−17 1.12

AGED_RHESUS_UP 0.003 1.24 1.02 × 10−12 1.33 2.51 × 10−13 1.09 1.79 × 10−15 1.15

ICHIBA_GVHD 0.287 1.09 3.56 × 10−13 1.41 1.18 × 10−12 1.12 8.53 × 10−14 1.16

BRCA_ER_NEG 0.009 1.07 5.40 × 10−11 1.22 4.48 × 10−12 1.08 9.94 × 10−17 1.13

HSC_HSC_ADULT 0.018 1.11 4.26 × 10−12 1.29 5.84 × 10−12 1.09 1.49 × 10−12 1.14
a Clinical factors include age, sex, smoking status, and ethnic origin.
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signal than common variants within these pathways,
and the combined effects were dominated by those
from common variants. In addition, all seven top-
ranked pathways showed stronger genetic effects after
clinical factors were adjusted. It was interesting that
these pathways all contained some true genes or SNPs
(Table 2). This might have been partly driven by the
size of the pathways (number of genes or SNPs they
contained). However, our algorithm identified large
pathways as well as some small pathways that con-
tained more true genes or SNPs.
Based on the empirical p-values, only the top three

pathways (p = 4.51 × 10−5, 3.76 × 10−6, 3.06 × 10−6)
reached a Bonferroni-corrected significance level (p <
6.47 × 10−5).

Population structure
The disease prevalence in different populations was sig-
nificantly different (p < 2.2 × 10−16) (Figure 1). The Afri-
can cohort had the highest risk, followed by the
European cohort; the Asian cohort had the lowest risk.
Linear regression models that explored associations of
genetic risk (combined risk score) and population
showed highly significant differences for the seven most

significant and disease-associated pathways (all p-values
less than 1 × 10−10). Likelihood ratio tests that assessed
the effects of population on disease when genetic risk
scores were taken into account gave p-values greater
than 0.05 for five of the seven pathways, which suggests
that prevalence differences in different populations are
likely due to genetic differences.

Discussion and conclusions
In this study, we evaluated the genetic effect on the
pathway level based on both common and rare genetic
variants. Overall, we did not find significant associations
at the single-SNP level; however, several significant
pathways (of either rare variants alone or rare and com-
mon variants together) were detected to be potentially
associated with disease status. The associations still exist
after adjusting for other factors, which is robust evi-
dence for the pathway-based effect. Because of this
result, we believe that modeling SNPs at the pathway
level can enhance the power to detect genetic effects
compared to modeling single SNPs. In common prac-
tice, investigators may have to take multiple steps to
make good use of pathway information. These steps
include using different methods to screen out potential
pathways in the first stage and then validating those
results.
The top identified pathways show that both common

and rare variants have consistent signals but with differ-
ent magnitudes. For this study, the common variants
showed stronger signals. This suggests that the underly-
ing mechanism for genetic effects is likely to be a joint
effect consisting of both common and rare variants.
The significant difference of the disease prevalence

across subpopulations is interesting and led us to
explore potential factors affecting it. Using the likeli-
hood ratio test with the genetic risk score in a nested
model, we found that the disease risk was no longer sig-
nificantly associated with population category. This sug-
gests that the genetic component may partly explain this
difference in disease prevalence. Different distributions
of the disease-related genetic profiles may cause differ-
ent disease prevalences across populations. For example,

Table 2 Pathway size and number of true genes or SNPs that each pathway contains

Pathway Number of
genes

Number of
true genes

Number of
rare SNPs

Number of true
rare SNPs

Number of common SNPs
picked by LASSO

Number of true
common SNPs

STEMCELL_EMBRYONIC_UP 181 1 1,046 3 53 1

LEE_TCELLS2_UP 169 3 1,114 4 51 1

DAC_PANC_UP 65 2 504 9 39 0

AGED_RHESUS_UP 50 2 392 10 24 3

ICHIBA_GVHD 43 3 352 5 18 2

BRCA_ER_NEG 152 2 791 4 33 1

HSC_HSC_ADULT 56 2 408 11 27 0

Figure 1 Disease prevalence distribution in different population
groups (based on 200 replications)
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the African cohort has the highest genetic risk score, the
European cohort has an intermediate risk score, and the
Asian cohort has the lowest risk score, corresponding to
the highest disease risk in the African cohort, an inter-
mediate risk in the European cohort, and the lowest risk
in the Asian cohort. Further analysis may be needed to
identify other effects that may contribute to the different
disease prevalences across the subpopulations.
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