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Abstract

Next-generation sequencing technologies are rapidly changing the field of genetic epidemiology and enabling
exploration of the full allele frequency spectrum underlying complex diseases. Although sequencing technologies
have shifted our focus toward rare genetic variants, statistical methods traditionally used in genetic association
studies are inadequate for estimating effects of low minor allele frequency variants. Four our study we use the
Genetic Analysis Workshop 17 data from 697 unrelated individuals (genotypes for 24,487 autosomal variants from
3,205 genes). We apply a Bayesian hierarchical mixture model to identify genes associated with a simulated binary
phenotype using a transformed genotype design matrix weighted by allele frequencies. A Metropolis Hasting
algorithm is used to jointly sample each indicator variable and additive genetic effect pair from its conditional
posterior distribution, and remaining parameters are sampled by Gibbs sampling. This method identified 58 genes
with a posterior probability greater than 0.8 for being associated with the phenotype. One of these 58 genes,
PIK3C2B was correctly identified as being associated with affected status based on the simulation process. This
project demonstrates the utility of Bayesian hierarchical mixture models using a transformed genotype matrix to
detect genes containing rare and common variants associated with a binary phenotype.

Background
The past decade of human genetics research has been
dominated by Genome-Wide Association Studies
(GWAS) and the common disease/common variant
hypothesis. Although GWAS have successfully identified
numerous single-nucleotide polymorphisms (SNPs)
associated with common diseases, a large portion of the
heritability for most diseases remains unexplained [1].
One proposed source of the missing heritability is rare
variants. Rare variants (minor allele frequency [MAF] <
5%) are estimated to make up 60% of variation found in
the human genome [2]. In addition to being abundant,

these rare SNPs are more likely to have functional
implications [2]. A new generation of genome sequen-
cing technology, combined with a paradigm shift recog-
nizing the importance of low-MAF SNPs, has led to the
emergence of sequencing studies of the whole genome,
whole exome, or targeted genes [2,3].
The prevailing statistical approach for estimating

genetic effects in GWAS has been to test one SNP at a
time for association with the phenotype of interest using
linear or logistic regression. This approach is limited in
sequencing studies because, by definition, sequencing
studies identify rare genetic variants that individually do
not provide statistical power for detecting associations.
To address power limitations of individually rare var-
iants, researchers have proposed numerous methods for
pooling rare variants together within a predefined func-
tional unit, often a gene [4]. Although these pooling
methods increase statistical power for implicating a gene
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or genomic region, they are limited because they cannot
determine which of the pooled SNPs has causal poten-
tial and because they ignore complexity by modeling
only one gene at a time.
Bayesian hierarchical methods provide an alternative

statistical approach for examining genetic sequence data
[5]. These methods have several advantages over single-
marker regression methods[5][6][7]. Bayesian methods
provide the ability to specify prior layers of hierarchical
structure as parameter dependencies (i.e., SNPs nested
within genes). Another advantage of Bayesian methods
is the simultaneous estimation of genetic effects, as
opposed to regression methods that estimate the effect
of each genetic variant independent of any other genetic
markers. The purpose of this study is to use the Genetic
Analysis Workshop 17 (GAW17) mini-exome sequence
data to test the application of a Bayesian hierarchical
mixture model for identifying genes containing rare and
common variants associated with a simulated binomial
outcome.

Methods
Data
This study includes 697 unrelated individuals from repli-
cate 1 of the GAW17 data set. Genetic sequence data
were provided by the pilot3 study of the 1000 Genomes
Project and included 24,487 autosomal SNPs from the
exons of 3,205 genes. Analysis was performed without
any knowledge of the phenotype simulation process.

Statistical model
We use a hierarchical Bayesian mixture model to iden-
tify genes associated with a dichotomous phenotype.
The statistical model for each observation is:

yi i i
y

i
yi ih p p~ ( )1 1− − , (1)

where hi is a linear combination of effects that repre-
sents the liability of disease (i.e., a logit transform of the
probability of having the disease) for individual i, yi
represents the outcome for individual I, and πi is the
probability that individual i has the trait of interest. The
model for the vector of liabilities is:

h b b, , ~ ( , )*u w N X Z wu I+ , (2)

where covariate effects (Age, Sex, Smoking) are
adjusted through the vector b with design matrix X, the
effects of SNPs within a functional region are repre-
sented by the vector u with design matrix Z* (defined
later), and w is a vector of indicator variables such that
if wj = 0, then uj = 0, and if wj = 1, then
u Nj u= ( , )0 2 s ). Uniform prior distributions are

assigned to nuisance parameters in b, and an indepen-
dent inverse scaled chi-square prior distribution is used
for s u

2 .
We use two formulations of the SNP effects design

matrix: Z and Z*. In both formulations, let zi,j be the
genotype of individual i at variant j, and let the common
allele Aj and variant allele aj have frequencies
p A p a pj j( ) ( )= − =1 .
We define elements of the Z matrix using the tradi-

tional additive genetic model: z(ajaj) = −1, z(Ajaj) = 0,
and z(AjAj) = 1. We use this Z formulation to detect lin-
ear dependencies within genes and thereby to identify
SNPs for removal because of multicollinearity with at
least one other SNP in that gene. To identify multicol-
linear SNPs, we add one SNP at a time into the matrix
K and compute the determinant of the K′K matrix for
each gene. If the determinant of the square matrix
equals 0 after the addition of any SNP, this indicates
collinearity with another SNP or set of SNPs already
within the gene and that SNP is removed from K. We
construct the final Z matrix by binding the resulting K
matrices from each gene (Kgene1, Kgene2, …, Kgene3205).
This approach approximates haplotype analysis using a
regression style of formulation with a minimal set of
regressors. These models have a simpler structure than
the usual variance component models for haplotype ana-
lysis, and the set of linearly independent SNPs within
the gene potentially describes all haplotype variation.
In the second formulation of SNP effects, we define

the elements of the Z* matrix by:

z a a
p

p p
j j

*
/( )

[ ( )]
= −

−
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2 1 1 2 , (3)
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p p
j j
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= −
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2 1 1 2 , (4)

and

z A A
p

p p
j j

*
/( )

[ ( )]
= −

−
2 2

2 1 1 2 . (5)

This Z* matrix design brings standardizes the effects
in u as if the population came from random mating and
therefore provides greater leverage for detecting rare
alleles as nonnull [8]. Additive effects for the subjects
are the sum of the individual SNP effects in the liability
scale, given by:

g z w ui i j j j= ∑ ,
* , (6)

and uj can be seen as a scaled average effect of a sub-
stitution of a common allele by a variant allele.
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We assume equal variance across all genes and SNPs.
Because the proportion of genes truly associated with
disease status in the total data set is unknown, we treat
a single mixing coefficient (l, the proportion of asso-
ciated genes) as a parameter to be estimated. We assign
a Β(2, 18) prior distribution to l such that p(uj = 0) = 1
− l and p u Nj u( ~ ( ))0 2, s l= . The prior distribution
can and should be tailored to be appropriate for any
given outcome being studied. We infer a gene’s impor-
tance in liability of disease on the distribution of the
indicator variable in the posterior sample. This is an
approximation of the marginal distribution for the prob-
ability of the gene carrying an associated variant (i.e., at
least one SNP within that gene is associated with the
outcome). Within genes, further inference can be made
on which SNPs are more likely to be associated by
investigating the posterior distribution of SNP effects
within the gene.
We use a Metropolis Hasting algorithm to jointly

sample each (wj, uj) pair from its conditional posterior
distribution, and remaining parameters are sampled by
Gibbs sampling. Four chains of 100,000 Markov chain
Monte Carlo (MCMC) samples are drawn, and the first
50,000 samples are discarded as the burn-in period. The
samples are thinned at a rate of 10, leaving 5,000 sam-
ples for inference. Convergence of Markov chains is
confirmed using Raftery and Lewis diagnostics, as
described in their studies [8,9]. We consider the final
chain of 5,000 samples converged if its effective size is
greater than 4,000. This implies low dependence in the
final chain and low estimates of initial samples to dis-
card. We also visually inspect the chain plot for any sys-
tematic trends. We calculate highest posterior density
intervals for mixing parameters and for effects of SNPs.
Programs were implemented in R [10]. A detailed

description of the sampling process can be found in the
Appendix, and the R code is available to investigators
upon request.

Results
Of the 697 individuals, 209 were affected with the simu-
lated dichotomous phenotype. Of the 24,487 SNPs
included in the GAW17 data set, we removed 576 SNPs
because of their collinearity with another SNP or combi-
nation of other SNPs in the same gene. This resulted in
23,961 SNPs for analysis, with at least 1 SNP from each
of the 3,205 genes. The number of SNPs per gene varied
from 1 to 203, with an average of 7.48. The MAF of
SNPs varied from 0.000717 (private variants) to 0.50,
with an average MAF of 0.0438.
Convergence of Markov chains was confirmed using

Raftery and Lewis diagnostics, as described earlier. The
posterior mode of l was 0.0625 with a highest posterior
density interval of [0.0059, 0.2320]. These values do not

depart much from the Β(2, 18) prior distribution, and
considering that 3,205 genes are analyzed, the number
of genes contributing to the affected status can vary
from 19 to 744.
We also computed the posterior probability of each

gene being associated with the dichotomous outcome.
Figure 1 is a scatterplot of the posterior probability for
each of the 3,205 genes as a function of the number of
SNPs within the gene when using the allele-frequency-
weighted Z* design matrix. As was done by Meuwissen
and Goddard [11], we focused our inference on genes
with a posterior probability greater than 0.8. Of the
3,205 genes, 58 had a posterior probability greater than
0.8 in at least one gene from each chromosome, and 23
had a posterior probability equal to 1 (Table 1). The
mean MAFs (and standard deviations) were 0.0239
(0.072) for SNPs within the 58 genes and 0.0226 (0.069)
for SNPs within the 23 genes. Out of the 58 genes with
a posterior probability greater than 0.80, only PIK3C2B
was designated as associated with the outcome in the
simulation process. PIK3C2B had 71 SNPs, 24 of which
were indicated as associated with the disease in the
simulation. Based on our threshold of >0.80 for the pos-
terior probability, our sensitivity and specificity for prop-
erly classifying genes as associated (or not associated)
with the dichotomous outcome of interest were 0.028
and 0.982, respectively. Although we correctly identified
only one of the associated genes, it is worth noting that
not all SNPs within PIK3C2B were included in the
simulation and that the SNPs that were included in the
simulation had very low MAF (range, 0.000717–
0.010760). We also ran the analysis using the
unweighted Z design matrix. No gene was identified
with a posterior probability greater than 0.20 (Figure 2).

Discussion
We have introduced a framework for the use of Baye-
sian hierarchical mixture models to identify genes asso-
ciated with a dichotomous phenotype when those genes
contain variants from across the entire allele frequency
spectrum. Of particular interest in our method is the Z*

design matrix for leveraging rare variants and the subse-
quent ability of this model to estimate effects of SNPs
and genes regardless of the MAF. This is a great advan-
tage over the standard regression methods used in
GWAS, which do not have the statistical power to
detect SNP effects for rare or private variants. This
method strongly resembles the stochastic search variable
selection (SSVS) that has been used in quantitative trait
locus analysis [6].
There are some limitations to our method. The most

obvious is the high false discovery rate, a common
theme of GAW17 and a known limitation in high-
dimensional genetic association studies. After receiving
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the simulation answers from the GAW17 organizers, we
identified a few potential sources for our high false dis-
covery rate. One is the apparent mass effect bias, in
which genes with more SNPs trend toward a higher pos-
terior probability of being associated with the outcome
(Figure 1). This bias arises because the fitting process
comes from a conditional multiple regression and every
regressor contributes to the probability of the gene. This
fitting process could lead to false-positive results, and
future extensions of this model should take gene size

into account. Interestingly, the gene with the most
SNPs, AHNAK (231 SNPs), was not identified with a
posterior probability greater than 0.80. Therefore,
although genes with larger numbers of SNPs trend
toward increased posterior probability, this does not
guarantee that the gene will be identified with a high
probability of association (see bottom right-hand corner
of Figure 1). Investigating different methods for assign-
ing variances proposed in previous SSVS methods [6,12]
may help to reduce this mass effect bias.
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Figure 1 Scatterplot of posterior probability of a gene being associated with a dichotomous outcome of interest when using the
allele frequency weighted Z* design matrix. There were 58 genes with a probability greater than 0.80.
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A second limitation of our method is the relative
sensitivity to prior specification of the proportion of
associated genes, l. This is a common limitation of
Bayesian hierarchical models that try to overcome the
n p problem. These models are sensitive to prior
specification of the mixing parameter, at least with
regard to the rate of convergence. Although our prior
b(2, 18) achieved relatively quick convergence, the
GAW17 simulation answers indicate that it was too
large of a prior distribution and therefore contributed
to our high false-positive rate. Future uses of this fra-
mework should consider using a more conservative
prior distribution, although this will add to the compu-
tation time.
Our R code enabled gene-level inference after

approximately 5 days of computing. We are currently
working on improvements to lessen the already inten-
sive computational time. A high-priority improvement
in the method is a way to assess the acceptance of the
gene in the model using a likelihood ratio test that
allows for the most parsimonious model to be selected
(i.e., some penalty for the number of parameters). An
extension to accepting genes in the model would
include a method for discarding SNPs from a selected
gene. We could also consider including only nonsy-
nonymous SNPs. However, we thought that this would

be only a minor improvement because a good method
should identify synonymous SNPs as noncausal (if they
truly are). A final improvement would be to extend the
hierarchy of the model to include the probability of a
SNP being associated within a given associated gene.
This probability could be estimated gene by gene and
the final set of w variables could depend on both l1
(gene being associated) and l2 (SNP being associated
in the jth gene).
We should also note that our high false discovery rate

might be overestimated. Work done by another GAW17
group identified 695 genes that gave consistent false-
positive results across numerous statistical methods and
phenotype replicates [13]. From our list of 58 genes, 57
were incorrectly estimated to be associated with the bin-
ary phenotype, and 23 of these 57 were identified as
consistent false positives by Luedtke et al. [13].
Although the reason that these genes give consistent
false-positive results is still unknown, this issue high-
lights the importance of data quality control and the
sensitivity of analytic methods to genotyping error or
cryptic structure within the data.
Despite the limitations, our method has its advan-

tages. Most notable is the ability of our method to
more accurately represent genetic architecture through
estimation of genetic effects conditioning on all other
genetic effects and any risk factors of interest. Cur-
rently, most genetic association studies investigate one
SNP at a time as though each SNP were independent of
the others. Association studies using haplotypes attempt
to better demonstrate dependency within the genome
and functional units within genes. However, with
sequence data, haplotype analysis will only worsen the
dimensionality problems in association testing because
of the number of rare variants. Our method of approxi-
mating haplotypes in a regression framework provides a
more parsimonious approach than traditional haplotyp-
ing methods.
Another advantage of our method is the weighting of

the design matrix by incorporating allele frequency
information. Figures 1 and 2 compare the method when
using the Z* and Z genotype design matrices. No gene
reached a posterior probability greater than 0.20 with
the unweighted design matrix (Z); therefore the allele-
frequency-weighted design matrix (Z*) greatly improves
our leverage for detecting genes with a higher posterior
probability of being associated with the outcome of
interest.

Conclusions
We applied a novel Bayesian hierarchical mixture model
to sequence-level exome data for identifying genes and
SNPs associated with a dichotomous phenotype. The
analysis resulted in a substantial number of false-positive

Table 1 Characteristics of the 23 genes with a posterior
probability equal to 1.0

Gene Chromosome Number of SNPs Mean MAF

PIK3C2B 1 71 0.0270

GOLGB1 3 82 0.0210

CENPE 4 82 0.0165

PCLKC 5 65 0.0189

PLEKHG4B 5 80 0.0279

BAT2 6 83 0.0293

UTRN 6 111 0.0198

RELN 7 122 0.0147

TG 8 120 0.0103

ANKRD15 9 80 0.0284

ERCC6 10 64 0.0196

TACC2 10 108 0.0201

SYTL2 11 65 0.0417

LRRK2 12 67 0.0490

POLE 12 92 0.0173

FREM2 13 136 0.0173

ALPK3 15 68 0.0249

VPS13C 15 113 0.0160

ABCC6 16 66 0.0273

BAIAP3 16 50 0.0086

HEATR6 17 46 0.0054

KIAA0802 18 85 0.0195

BRWD1 21 69 0.0253
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gene-level inferences, which appeared to be sensitive to
the number of SNPs in each gene. Despite the high false
discovery rate, we demonstrated a statistical approach
that can simultaneously consider SNPs from the entire
allele frequency spectrum. Further improvement of this
approach, coupled with a growing understanding of
sequence data, may contribute to advances in genetic
epidemiological research.
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The joint posterior distribution is given by:
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Figure 2 Scatterplot of posterior probability of a gene being associated with a dichotomous outcome of interest when using the
unweighted Z design matrix based on an additive genotype model. There were no genes with a probability greater than 0.80.
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in which v and s2 are the hyperparameters of the
inverse scaled chi-square distribution for s u

2 . Most of
the parameters can be updated directly from their full
conditional distributions:

p w u y N x z ui u i
y

i
y

i i
i ih b l s m m b, , , , , ( ) ( , )2 11 1( ) ∝ −⎡

⎣
⎤
⎦ × −− , (A.2)

b h l s h, , , , , ( ) ( ), { }w u y X X X Zu Iu p
2 1 MVN ,(A.3)′ ′ −⎡

⎣
⎤
⎦

−

s h b l cu w u y w w v u u vs2 2 2, , , , , ( ; ) InvScaled , (A.4)′ + ′ +

where MVN stands for multivariate normal.
The following parameters require a tailored Metropo-

lis Hastings step. For updating l, use:

p w u y w w
u u

u j j u
j j

u

l h b s l l ps
s

, , , , , ( )( ) exp
/2 2 1 2

21 1 2
2

( ) ∝ − − + ( ) −
′⎛−

⎝⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− ( )∏ − −

j

a b( ) ( ) . .l l1 11 A 5

Next, sample l* from a candidate-generating function
q(c, d) that is the same as the prior distribution, Β(c = 2,
d = 18). Accept the outcome with probability:

a

l l ps
s

=

− − + −
′⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥−( )( ) ( ) exp* * /1 1 2

2
2 1 2

2w w
u u

j j u
j j

u ⎥⎥

− − + −
′⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥

∏
−

j

j j u
j j

u

w w
u u

( )( ) ( ) exp/1 1 2
2

2 1 2
2l l ps

s ⎥⎥∏
j

. (A.6)

For updating wj and uj (jointly), use:

p w u w u y w w Nj j j j u j j, , , , , , , ( )( ) [ , var]_ _h b l s l l2 1 1( ) ∝ − − + mean (A.7))

in which:

var .=
+ ′

( )s
s

u

u j jZ Z

2

21
A 8

and

mean . (A.9)= × − −( )var _ _Z X Z uj j jh b

Sample w j
* ,= { }0 1 from the candidate-generating

function uniform(0, 1); if w j
* = 0 , then u j

* = 0 ; and if
w j

* = 1 , then:

u N z z z X Z u z zj j j j j j u j j u
*

_ _ ; ′( ) ′ − −( ) ′( )⎢
⎣⎢

⎥
⎦⎥

− −1 1 2h b s s . (A.10)

Accept ( , )* *w uj j with probability:

a
h b l s

h b l s
=

( )
( )

p w u w u y

p w u w u y

j j j j u

j j j j u

* *
_ _

_ _

, , , , , , ,

, , , , , , ,

2

2
.. (A.11)

For fast sampling, we took the average of the normal
distribution from Eq. (A.10) instead of a random sample
[9].
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