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Abstract

Background: In genomic models that assign an individual variance to each marker, the contribution of one marker
to the posterior distribution of the marker variance is only one degree of freedom (df), which introduces many
variance parameters with only little information per variance parameter. A better alternative could be to form
clusters of markers with similar effects where markers in a cluster have a common variance. Therefore, the
influence of each marker group of size p on the posterior distribution of the marker variances will be p df.

Methods: The simulated data from the 15th QTL-MAS workshop were analyzed such that SNP markers were ranked
based on their effects and markers with similar estimated effects were grouped together. In step 1, all markers with
minor allele frequency more than 0.01 were included in a SNP-BLUP prediction model. In step 2, markers were
ranked based on their estimated variance on the trait in step 1 and each 150 markers were assigned to one group
with a common variance. In further analyses, subsets of 1500 and 450 markers with largest effects in step 2 were
kept in the prediction model.

Results: Grouping markers outperformed SNP-BLUP model in terms of accuracy of predicted breeding values.
However, the accuracies of predicted breeding values were lower than Bayesian methods with marker specific
variances.

Conclusions: Grouping markers is less flexible than allowing each marker to have a specific marker variance but,
by grouping, the power to estimate marker variances increases. A prior knowledge of the genetic architecture of
the trait is necessary for clustering markers and appropriate prior parameterization.

Background
The statistical methods for genomic selection introduced
by Meuwissen et al [1]; i.e. SNP-BLUP, BayesA and
BayesB, are still the most popular ones. G-BLUP that
exploits SNP genotypes to build genomic relationship
matrix emerged some years later and it was shown that
G-BLUP and SNP-BLUP are equivalent models [2,3].
From other approaches for genomic prediction of breed-
ing values (BV) one can name LASSO [4], Bayesian
LASSO [5] and reproducing Hilbert space models [6].
These latter methods have not led to magnificent

improvement over the original methods proposed by
Meuwissen et al. [1] in BV prediction.
In BayesA and BayesB the prior distribution of each

marker effect is assumed normal with a marker specific
variance σ 2

i . The marker variances follow a scaled-
inverse Chi-squared distribution with some scale and
degrees of freedom (df) hyperparameters, a priori [1].
Therefore, the marginal posterior distribution of marker
effects is a t-distribution [7]. In this setting, the resulted
drawback is that the contribution of each marker to the
posterior distribution of marker variances is only one df,
that is very little information for any prior specification
[7]. As a remedy, Gianola et al [7] suggested to form
clusters of markers where markers in a cluster have a
common variance. Therefore, the influence of each marker
group of size p on the posterior distribution of the marker
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variances will be p df. Further, they suggested assigning
noninformative priors to scale and df parameters of the
distribution of marker variance or marker-group variance.
In the present study, a strategy for grouping markers with
similar effects together was applied to the simulated data
from the 15th QTL-MAS workshop [8]. The analysis was
performed in two steps, where, in the first step marker
effects were estimated in a SNP-BLUP analysis, and in the
next step, markers with similar effects were allocated to
one group. From complexity point of view, this strategy
stands between SNP-BLUP where a single variance is
common to all markers, and BayesA-B, where each marker
has a variance. The aim of this study was to investigate the
performance of this strategy on the accuracy of genomic
breeding values. Further, the effect of prior setting for the
marker-group variances on the extent of phenotypic var-
iance explained by each group of markers was investigated.

Methods
Model
First, an animal model BLUP using pedigree and pheno-
types was performed to predict breeding values of all
animals, and REML estimate of heritability was obtained
[9]. Further, the heritability and breeding values were
estimated using genomic models [10] and compared
with the ones from animal model.
The SNP-BLUP additive genomic model was used to

estimate SNP effects in the first step as:

yi = μ +
∑
j

xijβj + ei i = 1, . . . ,n and j = 1, . . . , q (1)

where μ is the general mean, bj is the allele substitu-

tion effect of the jth SNP with β ∼ N(0, Iσ 2
β ) , xij is the

genotype covariate of the jth marker for the ith animal,
associating marker effects bj to the phenotype yi, and ei
is residual or environmental effect with e ∼ N(0, Iσ 2

e ) .

The genotype covariate is initially coded as 0,1,2 for
homozygote, heterozygote and alternate homozygote,
and then centered to have mean zero. Flat priors were

considered for the residual variance σ 2
e and marker var-

iance σ 2
β to estimate them in a reference Bayesian

approach that uses the frequentist likelihood as the
Bayesian posterior distribution.
The estimated marker effect β̂j from model (1) was

used to estimate the variance explained by that marker

in the population as pj
(
1 − pj

)
β2
j , where pj is the fre-

quency of one of the alleles of the jth SNP. Then, all
markers were sorted based on their explained variance
and each 150 marker were grouped together. We tried a
grid of different SNP-group sizes and among them a

SNP-group size of 150 yielded the highest accuracy of
PBV in the validation dataset (explained in results and
discussion).The model for the second step (ALL-SNP)
with grouped SNP and group specific SNP variance was:

yi = μ +
∑
j

xijβjk + ei i = 1, . . . ,n, j = 1, . . . , q and k = 1, . . . , g (2)

where bjk denotes the effect of the jth marker that
belong to group k, and g is the total number of groups.
A model was used with a variance parameter per group,
and the group variances are jointly modeled to have an
inverse chi-square distribution in which the scale is trea-
ted as a model parameter. The prior specification was as
follows:
μ~uniform; βjk ∼ N(0, σ 2

k ) ; σ 2
k ∼ χ−2(scale, df );

σ 2
e ∼ uniform(> 0) ; σ 2

e ∼ uniform(> 0) ; scale~uniform

(>0); and df: a fixed number as hyperparameter.
The fully conditional posterior distributions were as

follows:

μ|. ∼ N

⎛
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where nk is the group size for SNP-group k. In this
study nk was equal to p for all SNP-groups;

σ 2
e |. ∼ χ−2
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(3)

In further analyses, respectively, 1500 (SNP1500) and
450 (SNP450a, SNP450b) markers with the largest
effects from model (2) were selected and were allocated
to groups of size 150 (for 1500 markers), and 75 or 50
(for 450 markers). Then, breeding values of animals
without records were predicted using the marker effects
from these subsets of markers.

Gibbs sampling
Gibbs sampling was used to sample from joint posterior
distributions for all datasets. The chain length was
50.000 in all analyses where the first 20.000 samples
were discarded as burn in and one of each 30 samples
were saved to compute the posterior means for the
parameters. Preliminary experience showed that a burn
in of size 20.000 guarantees the convergence for differ-
ent parameters.
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Results and discussion
The challenge was to predict the breeding values of 1000
genotyped animals with no phenotypes. The available
data comprised of 2000 animals with both genotype and
phenotype. We validated the models using 200 animals
such that the last progeny with genotype and phenotype
record from each dam was taken out of the data and
used for validation. The remaining 1800 animals were
used to train the model. Based on this validation the size
of the SNP-groups was chosen to be 150 and the scale
and df of the prior distribution of marker variances were
set to zero because this resulted in the highest accuracy
for the validation animals. A scale and df setting of zero
corresponds to the so-called Jeffreys or non-informative
prior for variances. After the true breeding values of the
other 1000 animals were provided, it turned out that
other prior specification for the marker variances can
give better predictive abilities. Perhaps, the reason was
that the 200 validation animals were not enough to
represent the whole population. Further, there was an
imprinted QTL where the effect is expressed if it has
been transmitted from one of the parents only. It is likely
that among these 200 animals most of them or all of
them have got the paternal (maternal) imprinted QTL.
Further details of the impact of prior specification of the
marker variances on estimation of SNP effects and breed-
ing values will be discussed.

Accuracy of predicted breeding values
The accuracies of predicted breeding values (PBV) from
the two-step method were higher than PBV from animal
model BLUP and SNP-BLUP (Table 1). Among the two-
step strategies, including all SNP in the model yielded
highest accuracy followed by, respectively, including 1500
and 450 markers. Animal model BLUP yielded the lowest
accuracy of PBV because it takes only parent average BV
to predict BV of offspring. Clustering SNP in groups with
similar effects improved the accuracy compared to SNP-
BLUP by around 4%, but the accuracy was still 7% lower
than BayesB method [11,12]. Given that only eight
makers were causative QTL, it is natural that BayesB

performs best because it has been invented to locate the
marker variance efficiently for few QTL with large effects
[1]. In the two-step approaches, all of causative SNP were
allocated to the first group with largest effect but the
group size was much larger than the true number of cau-
sative SNP. This can lead to some discrepancy in estimat-
ing SNP effects that is described later in this paper.

Variance components and heritability
Table 2 shows the estimates of heritability of the trait
using animal model BLUP (REML), SNP-BLUP and
grouping scenarios. The REML estimate of (narrow
sense) heritability was very close to the simulated (broad
sense) heritability. This indicates that the non-additive
variance due to one pair of epistatic QTL has been neg-
ligible. SNP-BLUP underestimated heritability by 1%
meaning that it has captured most of additive variance
despite the fact that genetic values were due to few
QTL with large effects. Several studies have shown that
SNP-BLUP can capture relationship; i,e, genetic similari-
ties between animals, and this is independent of the
number of QTL and the distribution of QTL effects
affecting the trait [13,14]. This characteristic of SNP-
BLUP has led to the use of genomic relationship matrix
in genetic evaluation programs based on SNP markers
[2]. On the other hand, all two-step scenarios overesti-
mated heritability by around 5.5%. This shows that they
were not able to separate the signal from the noise
perfectly.

Prior distribution for variances
Overestimation of the heritability in the two-step method
was mainly due to the prior setting for the SNP-group var-
iances (scale = 0, df = 0, corresponding to the Jeffreys or
non-informative prior). In order to investigate the effect of
prior df, two other analyses with either 50 or 150 degrees
of freedom were run with all markers (extensions of ALL-
SNP), where, the scale parameter was updated using equa-
tion (3). Figure 1 shows the SNP-group heritabilities for
different df for the prior distribution of marker variances.
The overall heritabilities were 0.355, 0.351 and 0.305,
respectively, for the df of 0, 50 and 150. When both scale

Table 1 Correlation between predicted breeding values
of unphenotyped animals and their true genetic values
or expected genetic values of their progeny

Method Genetic value Progeny value

BLUP 0.608 0.595

SNP-BLUP 0.825 0.822

All_SNP1 0.862 0.841

SNP15001 0.861 0.840

SNP450a2 0.856 0.830

SNP450b3 0.854 0.823
1, 2, 3 Group sizes were 150, 75 and 50, respectively.

Table 2 Estimates of heritability from different methods

Method Heritability

True 0.300

REML 0.297

SNP-BLUP 0.289

All_SNP1 0.355

SNP15001 0.355

SNP450a2 0.357

SNP450b3 0.356
1, 2, 3 Group sizes were 150, 75 and 50, respectively.
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and df were set to zero, which is the non-informative prior
distribution σ 2

k ∼ 1/σ 2
k ), the first SNP-group with largest

QTL had a huge variance that explained all the genetic
variation plus a large fraction of noise. This setting resem-
bles a fixed regression scenario were in the first group, the
large variance induces very little shrinkage for 150 SNP in
this group. Because the SNP in the first group were not all
the real QTL, the model overestimated the genetic var-
iance. For df of 150, a priori, the posterior df was equal to
300 and the impact of 150 SNP within a group in deter-
mining the group variance reduced to half and the other
half was the share of prior. Therefore, a harder shrinkage
on the first group and less shrinkage on the rest of groups
was performed. It can be said that there is a trade off
between the accuracy of PBV and unbiased estimation of
heritability. A model with high df for the prior distribution
of group variances performs similar to a SNP-BLUP
model; it yields unbiased estimate of the heritability but
due to strong shrinkage on all markers, the accuracy of
PBV will not be high. On the other hand, a very small df
can lead to a regression with fixed marker effects that is
prone to capture noise.

Conclusions
Grouping markers is less flexible than allowing each mar-
ker to have a specific marker variance but, by grouping, the
power to estimate marker variances increases. A prior
knowledge of the genetic architecture of the trait is neces-
sary in order to clustering markers and appropriate prior
parameterization. In the workshop data set, the presented

approach to group SNPs gave better predictions than a
SNP-BLUP model, but worse predictions than a mixture
(BayesB type) model. However, the workshop data set had
a limited amount of QTL, which may not be representative
for many real data sets. In real data often little advantages
are seen for mixture models compared to SNP-BLUP, and
as our method clearly outperformed SNP-BLUP our
method could be of interest for further study in real data.
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