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Abstract

Background: Despite many success stories of genome wide association studies (GWAS), challenges exist in QTL
detection especially in datasets with many levels of relatedness. In this study we compared four methods of GWA
on a dataset simulated for the 15th QTL-MAS workshop. The four methods were 1) Mixed model analysis (MMA), 2)
Random haplotype model (RHM), 3) Genealogy-based mixed model (GENMIX), and 4) Bayesian variable selection
(BVS). The data consisted of phenotypes of 2000 animals from 20 sire families and were genotyped with 9990 SNPs
on five chromosomes.

Results: Out of the eight simulated QTL, these four methods MMA, RHM, GENMIX and BVS identified 6, 6, 8 and 7
QTL respectively and 4 QTL were common across the methods. GENMIX had the highest power to detect QTL
however it also produced 4 false positives. BVS was the second best method in terms of power, detecting all QTL
except the one on chromosome 5 with epistatic interaction. Two spurious associations were obtained across
methods. Though all the methods considered the full pedigree in the analyses, it was not sufficient to avoid all the
spurious associations arising due to family structure.

Conclusions: Using several methods with divergent approaches for GWAS can be useful in gaining confidence on
the QTL identified. In our comparison, GENMIX was found to be the best method in terms of power but it needs
appropriate correction for multiple testing to avoid the false positives. This study shows that the issues of multiple
testing and the relatedness among study samples need special attention in GWAS.

Background
Despite many successes, genome-wide association studies
(GWAS) still present major challenges. This is particularly
true for samples drawn from a population with multiple
levels of relatedness, such as population structure and/or
familial relatedness. The efficiency of a GWAS method to
detect a quantitative trait locus (QTL) depends on several
factors, for example, the genetic architecture, allele

frequency and heritability of the QTL, and the linkage dis-
equilibrium with the marker. The population structure
and relatedness of the samples may result in spurious
associations. We applied a range of GWAS methods to
map quantitative trait loci (QTL) in the simulated dataset
provided by the 15th QTL-MAS workshop [1] and com-
pared their efficiency in QTL detection with respected to
this particular dataset.
We compared four different methods of GWAS, 1)

Mixed model analysis (MMA); 2) Random haplotype
model (RHM); 3) Genealogy-based mixed model (GEN-
MIX) and 4) Bayesian variable selection method (BVS).
The mixed model approach [2] utilizes the full relationship
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matrix and is the method of choice when the samples are
drawn from a complex pedigreed population. The haplo-
type-based association methods using mixed models are
generally regarded as more powerful than methods based
on single markers [3,4] since they fully exploit LD infor-
mation from multiple markers. On the other hand, geneal-
ogy based clustering of haplotypes in GENMIX not only
consider the local LD but also takes the history of the ori-
gin of these haplotypes [5]. Contrary to the above three
methods which analyze single markers or a few markers at
a time, Bayesian variable selection [6] simultaneously fits
multiple marker effects and avoids the problem of multiple
testing. Therefore, it is useful to compare such Bayesian
methods with more standard frequentist approaches
where a single or a few SNPs are fitted at a time. The
above-mentioned methods were compared for power, pre-
cision of location estimate, and type I error rate.

Methods
The simulated population consisted of 20 sire families,
each sire was mated to 10 dams and each full-sib family
had 15 progeny. The phenotype was available for 10 pro-
geny per full-sib family i.e. a total of 2000 individuals.
There were five chromosomes each with 1998 SNPs at
equal distance of 0.05 cM. The four GWAS method used
for association mapping are described below.

Mixed model analysis (MMA)
The association between each SNP and the phenotype
was assessed by a linear mixed model analysis [2], using
DMU software [7]. The model was as follows:

y = 1μ + Xg + Zu + e

Where y is the vector of 2,000 phenotypes, 1 is a vector
of 1s of length 2,000, μ is the general mean, g is the addi-
tive effect of the SNP and X is a vector with genotypic
indicators (0, 1, or 2) associating records to the marker
effect, u is the random polygenic effect with the normal

distribution N(0,Aσ 2
u ) , where A is the additive relation-

ship matrix and σ 2
u is the polygenic variance. Z is an

incidence matrix relating phenotypes to the correspond-
ing random polygenic effect, and e is a vector of random
environmental deviates with the normal distribution

N(0, Iσ 2
e ), where σ 2

e is the error variance and I is the

identity matrix. Testing was done using a Wald test
against a null hypothesis of H0:gi=0. The significance
threshold was determined using a Bonferroni correction
for the number of markers tested to obtain an experi-
ment-wise P-value of 0.05.

Random haplotype model (RHM)
The SNP genotype data were phased using software Fas-
tPhase [8].The haplotypes were 4 SNP long and they

were tested for association sliding windows from SNP to
SNP. The model for testing the association of the haplo-
types at position j and the phenotype can be clarified in
scalar form as follows:

yi = μ + ui + qhmi + qhpi + ei

Where yi is the phenotype of animal i, μ is the popula-
tion mean, ui is the random polygenic effect, qhmi and qhpi
are the random effects of the maternal and paternal haplo-
types carried by individual i, and ei is the random residual
effect as defined for MMA. The other random effect q was
assumed to be normally distributed with mean zero and
variances Iσ 2

h (assuming equal variance for paternal and
maternal haplotypes). The significance of the haplotype
substitution effect was assessed with a likelihood ratio test
comparing the RHM model with a null-model containing
mean, polygenic effect and random error terms but no
haplotype effects. Analysis was performed using the DMU
software package [7]. Significant threshold was fixed at
genome wide 5% level after Bonferroni correction and the
mid-point of significant haplotypes were considered as the
putative QTL positions.

Genealogy based mixed-model (GENMIX)
The efficiency of GENMIX for association mapping was
described by Sahana et al. [5]. In contrast to regular gen-
ome-wide association studies where phenotypic differences
are either associated with single markers or with groups of
markers organized in to haplo-groups in a non-stratified
fashion, here phenotypes were associated using a hierarch-
ical approach. Both grouping of markers into haplo-groups
and clustering of observed haplotypes was done based on
local genealogies [9]. This method identifies the widest
possible region surrounding a marker that allows con-
struction of a genealogy forming a bifurcating tree without
either recurrent mutation or recombination, in other
words it satisfies the four-gamete condition of Hudson
and Kaplan [10]. Each bifurcation in the binary tree corre-
sponds to one bi-allelic marker. Splitting the tree at the
top generates two clusters of haplotypes. Splitting the tree
at any other node generates three clusters: one above the
split point and two corresponding to the two branches
below. For the analyses presented in this paper we split
the tree at the top (one set of two clusters), the second
level (two sets of three clusters) and at the third level (four
sets of three clusters). Successively each clustering of hap-
lotypes was included as a random effect in the model for
analysis:

yi = μ + ui + qh1i + qh2i + ei

where yi is the phenotype of individual i, μ is the
population mean, ui is as described above in the MMA;
qh1i and qh2i are two haplotype effects of individual i,
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where h1i and h2i can take values 11, 12, 13, 22, 23, and
33 and Var(q11, q12, q13, q22, q23, q33) = Iσ 2

h , σ 2
h is the

haplotype variance, and ei is a random residual as
defined for MMA. The local genealogies were con-
structed using the software Blossoc (http://www.daimi.
au.dk/~mailund/Blossoc/) and variance component ana-
lysis was carried out using the software DMU [7]. The
significance of the SNP association was tested using
likelihood ratio test and the significant threshold was
fixed at genome-wide 5% level after Bonferroni correc-
tion for multiple testing for the total number of
markers.

Bayesian variable selection (BVS)
The method is based on specifying a mixture distribution
for SNP effects while all SNP are fitted simultaneously in
the model [6]. It was assumed that most markers had very
small effects on the trait (98% of SNP in this analysis) and
only few markers (2%) had large effects. The allocation of
each SNP to either of these two distributions is done using
an indicator variable in Gibbs sampling. The averaged
mixture indicator estimates a posterior probability for that
SNP to come from the distribution with large effects,
which is interpreted as the probability for presence of an
associated marker or QTL. The analysis was performed
using BAYZ software [11] and the variances of the two
mixture components were estimated. The SNP with pos-
terior probability of the mixture indicator higher than
0.10; that corresponds to a Bayes factor of 5.5 were
reported as QTL. In cases where adjacent markers showed
a decreasing or increasing posterior probability of associa-
tion due to linkage disequilibrium, only the SNP with
highest probability was reported as QTL.

Results
The results of our analysis from four methods are sum-
marised in Table 1 and graphically represented in Figure 1.
A QTL was considered as identified if the putative location
was within 10 cM of the true simulated location of the
QTL. Out of the 8 simulated QTL, these four methods,
MMA, RHM, GENMIX and BVS identified 6, 6, 8 and 7
QTL, respectively. Four QTL regions, one on chromosome
1 and 5 and two on chromosome 3, were identified by all
the four methods. The numbers of false positives for these
methods were 2, 6, 4 and 2 respectively (Table 1).
The effects of the QTL localised by MMA are given in

table 2. The QTL with the biggest effect, explaining 10.2%
of the variation in the phenotype was localised on chromo-
some 1 at 3.55 cM region. The 6 QTL detected by MMA
together explained 18.4% of the phenotypic variance.
Precision of the methods was assessed by the average of

absolute differences between the positions of the simu-
lated and the detected QTL, whenever it was identified.
The QTL with the biggest effect on chromosome 1 was

detected with high precision (on average ± 0.3 cM from
the simulated QTL) and the epistatic QTL on chromo-
some 5 was detected with least precision (on an average
8 cM from the simulated QTL). In general the MMA
identified the QTL with higher precision.

Discussion
In our study we used additive models without considering
the genetic architecture of the simulated QTL; however
the methods performed well in localising the true simu-
lated QTL. Out of the four methods employed, GENMIX
performed comparatively better in QTL detection. It
detected all the 8 simulated QTL and 6 were mapped
accurately within a 2 cM region of the QTL region. How-
ever, it also identified 4 false positives (FP). The number of
tests carried out in GENMIX was approximately 7 times
the number of markers and we used Bonferroni multiple
testing correction for the number of total marker but not
for the total number of tests (i.e. ~7 times the number of
markers) which could have resulted in increased number
of false positives. Besides the number of haplotypes in a
lineage goes down as we moved down the tree [5] which
can give numerical instability. Out of these four FPs in
GENMIX, two (on chromosome 4 and 5) were identified
by other methods at the same location (Figure 1). Diver-
gent approaches of GWAS picking up the same FP could
be due to insufficient correction for family structure. A
likely explanation is that some SNPs in these two regions
were positively correlated (in linkage disequilibrium) with
the QTL because of linkage (within family). It is thus not
straightforward to distinguish true associations from spur-
ious, regardless of the correction for the pedigree struc-
ture. This underlines the importance of replication study
before a follow-up study can be taken up for identifying
causal mutation underlying a QTL.
BVS was the second best method in terms of power to

identify QTL and it had less FP compared to GENMIX.
It detected all the simulated QTL except the one on

Table 1 Positions (cM) of identified QTL with the four
methods

Chr. No. True Position Methods

MMA RHM GENMIX BVS

1 2.85 3.55 2.50 2.70 2.75

2 81.90 81.90 * 82.30 83.10

2 93.75 * 95.95 95.80 93.75

3 5.00 4.80 4.85 4.80 4.80

3 15.00 16.52 14.90 11.10 14.80

4 32.20 * * 31.70 28.30

5 36.30 36.19 35.95 36.00 35.15

5 99.20 91.29 91.05 91.20 *

False Positives 2 6 4 2

* False negatives
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chromosome 5 with epistatic interactions. BVS fits all the
SNPs simultaneously and given that the first epistatic
QTL was fitted in the model, there was a little chance for
the second one to be significant in the model. In other
words, the first QTL explains most of the variation
induced by both QTL because of their dependency. Espe-
cially, this can happen if the epistasis is of additive by
additive nature, where most of the epistatic variance is
converted to additive [12]. In order to confirm this, we
ran the MMA for all SNP on chromosome 5 where the
first epistatic QTL was already in the model. As a result,
the second epistatic QTL was not detected (results not
shown).
The MMA identified six QTL. The two linked QTL on

chromosome 2 were both identified by MMA but only the
first one (the most significant) was reported in the work-
shop as the second QTL was not significant when fitted
along with first one in the model. On the other hand

RHM detected both of them but the first QTL was
mapped 10 cM downstream the true QTL.
The highest significant SNP for the multi-allelic QTL on

chromosome 1 (largest QTL) in MMA was 0.7 cM away
from the true position, while the other methods mapped it
closer to its position. No individual SNP (bi-allelic) can be
in perfect LD with this QTL (multi-allelic) which might
have resulted in poor precision for this QTL in MMA.
The imprinted QTL on chromosome 4 was only detected

by GENMIX and BVS. The power of detection of the QTL
will decrease if the model does not reflect the true genetic
architecture of the QTL. However, GENMIX and BVS
methods were sensitive enough to identify the imprinted
QTL, though both of them model its effect as additive.
Sahana et al. [13] observed very high false positives

when haplotypes were considered as fixed effects in the
model. Because the frequency of some haplotypes can be
very low, this could result in low accuracy of estimates

Figure 1 Comparison of the positions of the simulated and detected QTL by four methods. The positions of the detected QTL are given
chromosome-wise for the four methods. The correct identifications are given in red diamonds and the false positives are given in gray circles.

Table 2 QTL effects estimated by single marker analysis based on linear mixed model; fitting all the detected QTL
simultaneously

Chr. No. Position Allele substitution effect¤ -log10(p-value) Effect#

1 3.55 4.19 39.38 10.27

2 81.98 2.10 8.31 2.46

3 4.80 2.71 13.12 3.47

3 16.52 0.65 1.29 0.25

4 56.16 1.79 4.00 1.07

5 91.29 1.37 3.22 0.88

¤ Absolute value

#Percentage of phenotypic variance
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and result in false positive when haplotypes are fitted as
fixed effect. We expected this problem can be taken care
by fitting haplotypes as random where the effects of the
low frequent haplotypes will be regressed towards zero.
However, RHM still had very high false positive rate.

Conclusions
Using several methods in analysing GWA can be useful in
gaining confidence on the QTL identified. Though, geneal-
ogy-based mixed model can be a powerful approach for
GWAS, appropriate multiple testing correction is neces-
sary to avoid false positives. Our study also shows that cor-
rection for pedigree relationship is not always enough to
avoid spurious association arising due to family structure.
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