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Abstract

Background: The goal of this study was to apply Bayesian and GBLUP methods to predict genomic breeding
values (GEBV), map QTL positions and explore the genetic architecture of the trait simulated for the 15th QTL-MAS
workshop.

Methods: Three methods with models considering dominance and epistasis inheritances were used to fit the data:
(i) BayesB with a proportion π = 0.995 of SNPs assumed to have no effect, (ii) BayesCπ, where π is considered as
unknown, and (iii) GBLUP, which directly fits animal genetic effects using a genomic relationship matrix.

Results: BayesB, BayesCπ and GBLUP with various fitted models detected 6, 5, and 4 out of 8 simulated QTL,
respectively. All five additive QTL were detected by Bayesian methods. When two QTL were in either coupling or
repulsion phase, GBLUP only detected one of them and missed the other. In addition, GBLUP yielded more false
positives. One imprinted QTL was detected by BayesB and GBLUP despite that only additive gene action was
assumed. This QTL was missed by BayesCπ. None of the methods found two simulated additive-by-additive
epistatic QTL. Variance components estimation correctly detected no evidence for dominance gene-action.
Bayesian methods predicted additive genetic merit more accurately than GBLUP, and similar accuracies were
observed between BayesB and BayesCπ.

Conclusions: Bayesian methods and GBLUP mapped QTL to similar chromosome regions but Bayesian methods
gave fewer false positives. Bayesian methods can be superior to GBLUP in GEBV prediction when genomic
architecture is unknown.

Background
Bayesian methods and the genomic BLUP procedure
(GBLUP) can be used for prediction of genomic esti-
mated breeding values (GEBV) and quantitative trait
loci (QTL) detection. BayesB generally performs slightly
better than GBLUP, especially when non-additive gene
actions are involved [1]. Apart from Bayesian methods,
GBLUP solutions can also be used to estimate marker

effects [2]. The objectives of this study were 1) to iden-
tify the positions of QTL affecting the trait simulated
for the 15th QTL-MAS Workshop and estimate their
effects using Bayesian methods and GBLUP, 2) to
explore the genetic architecture of the trait, especially
regarding presence of dominance and epistasis, and 3)
to predict GEBV of the individuals without phenotypes.

Methods
Data
The simulated population included 20 sires, 10 dams
per sire and 15 full-sib progeny per dam. The genome
consisted of 5 chromosomes of 1 Morgan and 1,998
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evenly spaced SNPs. Sources of information for analysis
included 2 generations of pedigree, genotypes for all indi-
viduals and phenotypic records for 10 progeny per family.
More detailed description of the dataset is available at [3].

Methods to predict GEBV
For additive gene-action, the statistical models BayesB
[4] with π = 0.995, BayesCπ [5] and GBLUP (G1) with
relationship matrix created according to [6] were
applied. To examine dominance gene-action, a both
additive and dominance SNP effects were fitted for
every locus using BayesCπ:

yi = μ +
∑k

j=1
(Xijaj +Wijdj) + ei

where Xij is the copy number of a given allele of ani-
mal i at SNP j, Wij is the dummy variable indicating
whether the genotype for SNP j of animal i is heterozy-
gous, aj (additive effect) is half the difference between
homozygotes for SNP j, and dj (dominance effect) is the
difference between heterozygote and the mean of homo-
zygotes for SNP j. The priors for aj and dj were mix-
tures of normals as described in [5], with effect specific
values for π (πa and πd) and variance s2 ( σ 2

a and σ 2
d ).

Gibbs sampling was used to sample the posterior distri-
bution of model parameters. SNP effects were estimated
by the mean of the sampled values. GEBVs were pre-
dicted as the linear combination of the SNP substitution
effects. GenSel [7] was used to implement the Bayesian
methods.
In GBLUP the presence of dominance was investigated

using a model with an additional random dominance
effect (G2) for each animal. The variance-covariance
matrix for this effect was created similar to the genomic
relationship matrix G, except genotypes were coded as 1
for heterozygotes and 0 for both homozygotes. The
third model (G3) had an additional random additive-by-
additive epistatic effect for each animal, with G2 as the
variance-covariance matrix. GEBV were estimated using
models G1 to G3 with variance components estimated
using ASReml [8].

Methods to map QTL
In the Bayesian methods, QTL positions were identified
based on the absolute value of estimated SNP effects,
the posterior inclusion probability (or model frequency)
for each SNP, and the variance of GEBV (or window
variance) for any 10 consecutive SNP standardized by
dividing by the total variance of GEBV in the popula-
tion. The QTL were mapped to the SNP that explained
the largest proportion of the total variance of GEBV
within the significant overlapping windows, whose var-
iances were in top (1− π̂)× 100% in BayesCπ or

visually remarkably higher than the background window
variances in BayesB. In GBLUP model G1, allele substi-
tution effects were estimated following [2]:

α = σ 2
αZ’G

−1â

where a is the vector of allele substitution effects,

σ 2
α = σ 2

a /2
∑

pi(1− pi) where σ 2
a is additive genetic

variance, Z is the genotype matrix with dimensions
equal to the number of individuals by the number of
SNPs, and â is the vector of GEBV obtained from
GBLUP. Given the estimated SNP effects, QTL were
mapped to the positions where the SNP had visually sig-
nificant effects on the trait.

Results
Estimated variance components
Table 1 shows the estimated variance components for
each method. All models, especially GBLUP, slightly
underestimated the both genetic and environmental
variance components. Heritabilities from the Bayesian
methods were close to the true heritability. The domi-
nance models under BayesCπ and GBLUP gave negligible
estimates of dominance genetic variance. No epistatic
variance was detected.

QTL mapping
Figure 1 shows the estimated SNP effects and single SNP
model frequencies for BayesCπ with the additive model.
Two regions showed strong evidence of association, indi-
cating QTL. The additive signals of SNP from the domi-
nance model of BayesCπ shown in Figure 2 confirm the
results of the additive model and suggest the absence of
dominance. The top 10-SNP window variances were
markedly higher than the background window variances
(Figure 3). While the top 10-SNP window variances

Table 1 Estimated variance components and heritability
(h2)

Methods Genetic Variance Components Residual Total h2

Additive Epistasis Dominance

True Value 26.35 61.49 87.84 0.3

BayesB 24.61 - - 60.17 84.78 0.29

BayesCπ

AM 24.19 - - 60.29 84.48 0.286

DM 24.27 - 0.12 60.16 84.55 0.287

GBLUP

G1 22.09 - - 59.8 81.89 0.269

G2 22.19 - 0.51 59.34 82.03 0.27

G3 22.09 6.20E-06 - 59.8 81.89 0.269

Obtained by BayesB (π = 0.995), BayesCπ using an additive model (AM) and
dominance model (DM), GBLUP using additive model (G1), with additional
random dominance effects (G2) and epistatic effects (G3).
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agreed with the significant regions found by single SNP
signals (Figure 2), the moderate single SNP signals
towards the end of the genome were absent in the
window variances. BayesB gave similar results to BayesCπ
thus the results are not shown. However, the selection of
significant windows in BayesB was more subjective.
GBLUP resulted in more signals and larger noise, which
increased the probability of false positives (Figure 4). It
turned out that BayesB detected 6 QTL, BayesCπ 5 and

GBLUP 4, out of 8 simulated QTL regions. Except for
one false positive on chromosome 1, all QTL identified
by BayesB and BayesCπ were in the true simulated QTL
regions. Under the additive model, a QTL region on
chromosome 4 was successfully detected by BayesB, and
at the cost of some false positives by GBLUP, but missed
by BayesCπ. This QTL, however, turned out to be an
imprinted QTL. None of the methods found the two
simulated epistatic QTL on chromosome 5.

Predictive accuracy of GEBV
Table 2 shows correlations between GEBV for validation
individuals from different methods. Compared with the
true simulated breeding values, BayesCπ gave the highest
accuracy of 0.939, which was slightly higher than BayesB
(0.934). GBLUP gave the lowest accuracy (0.825). Corre-
lations between GEBV from BayesB and BayesCπ were
close to 1.

Discussion
The simulated trait was affected by one QTL with major
and seven with minor effects. Two QTL were interacting
with each other (epistasis) and one was imprinted. All
approaches detected the major QTL and three to six
QTL with smaller effects. The Bayesian methods detected
more simulated QTL regions and gave fewer false posi-
tives than GBLUP. GBLUP failed to find one of the two
QTL that were close to each other. This confirms the
finding of [8] that when the genetic architecture of the
trait is complex, Bayesian methods are superior to
GBLUP in QTL mapping.
The failure to detect the imprinted QTL for BayesCπ

and the epistatic QTL for BayesB and BayesCπ reveals
some drawbacks of basing QTL mapping solely on win-
dow variances. A 10-SNP window may include too much
noise, which results in shrinkage of the signals towards
zero. Thus, the variance of the causative region may be
underestimated. As shown in Figures 1 and 2, although
some single SNP signals were shown for the imprinted
and epistatic QTL on chromosome 4 and 5, the small win-
dow variances prevented these regions from being consid-
ered significant (Figure 3). For the major QTL, 10-SNP
windows may be too narrow to cover the entire causative
region, which resulted in two QTL being identified. More-
over, if the parental origins of alleles were known, an addi-
tive model that fits substitution effects of the alleles
specific to their parental origins, or a dominance model
that fits dominance effects specific to the type of heterozy-
gotes (01 or 10) is expected to capture the imprinting
inheritance.
GEBV obtained using Bayesian and GBLUP analyses

were highly correlated among each other, which agrees
with [10]. In accord with earlier QTL-MAS workshops
[1,11], Bayesian methods yielded higher accuracy of GEBV

Figure 1 Single SNP association signals across the genome.
Absolute value of estimated SNP effects and model frequencies
obtained by BayesCπ using an additive model.

Figure 2 Model frequencies of SNPs across the genome. For
additive and dominance effects obtained by BayesCπ using a
dominance model.
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(0.93-0.94) than GBLUP (0.83). Because most SNP had no
effects on the trait, including spurious SNP in the model
introduced noise to GEBV and impaired the predictive
accuracy. For high-density SNP panels or DNA sequen-
cing data, Bayesian models are considered more robust
and the superiority over GBLUP is expected to increase.

Conclusions
Bayesian methods and GBLUP revealed the additive
genetic attributes of the simulated trait. The number of
indicated regions and their positions were in good agree-
ment with the truth. Bayesian methods were superior
to GBLUP in QTL mapping, with fewer false positives.

Figure 3 10-SNP window variances across the genome obtained by BayesCπ. Colours differentiate chromosomes and vertical lines indicate
true simulated QTL locations along with their gene actions.

Figure 4 Estimated marker effects (absolute values) across the genome obtained by GBLUP. Colours differentiate chromosomes.
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The window variance is a plausible criterion to identify
QTL using Bayesian methods, although some drawbacks
exist. The mutual correlations among alternative methods
were close to one but Bayesian methods yielded higher
accuracy for GEBV than GBLUP.

List of abbreviations used
QTL: quantitative trait locus; BLUP: best linear unbiased prediction; GBLUP:
BLUP with a realized relationship matrix; TABLUP: BLUP with a trait specific
relationship matrix; GEBV(s): genomic estimated breeding value(s); TBV(s):
true breeding value(s); SNP: single nucleotide polymorphism.
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Table 2 Correlations among GEBV

Method BayesB BayesCπ GBLUP

BayesCπ 0.997

GBLUP 0.918 0.897

TBV 0.934 0.939 0.825

Obtained by Bayesian methods and GBLUP, and with simulated true breeding
values (TBV) for validation individuals.

Zeng et al. BMC Proceedings 2012, 6(Suppl 2):S7
http://www.biomedcentral.com/1753-6561/6/S2/S7

Page 5 of 5

http://www.biomedcentral.com/bmcproc/supplements/6/S2
http://www.biomedcentral.com/bmcproc/supplements/6/S2
http://www.ncbi.nlm.nih.gov/pubmed/22373325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22373325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19448030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19448030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19448030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11290733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11290733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21605355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21605355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18946147?dopt=Abstract
http://bigs.ansci.iastate.edu/
http://bigs.ansci.iastate.edu/
http://www.ncbi.nlm.nih.gov/pubmed/22373155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22373155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22373502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22373502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20380752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20380752?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data
	Methods to predict GEBV
	Methods to map QTL

	Results
	Estimated variance components
	QTL mapping
	Predictive accuracy of GEBV

	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

