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Abstract

Background: The least absolute shrinkage and selection operator (LASSO) can be used to predict SNP effects. This
operator has the desirable feature of including in the model only a subset of explanatory SNPs, which can be
useful both in QTL detection and GWS studies. LASSO solutions can be obtained by the least angle regression
(LARS) algorithm. The big issue with this procedure is to define the best constraint (t), i.e. the upper bound of the
sum of absolute value of the SNP effects which roughly corresponds to the number of SNPs to be selected. Usai et
al. (2009) dealt with this problem by a cross-validation approach and defined t as the average number of selected
SNPs overall replications. Nevertheless, in small size populations, such estimator could give underestimated values
of t. Here we propose two alternative ways to define t and compared them with the “classical” one.

Methods: The first (strategy 1), was based on 1,000 cross-validations carried out by randomly splitting the
reference population (2,000 individuals with performance) into two halves. The value of t was the number of SNPs
which occurred in more than 5% of replications. The second (strategy 2), which did not use cross-validations, was
based on the minimization of the Cp-type selection criterion which depends on the number of selected SNPs and
the expected residual variance.

Results: The size of the subset of selected SNPs was 46, 189 and 64 for the classical approach, strategy 1 and 2
respectively. Classical and strategy 2 gave similar results and indicated quite clearly the regions were QTL with
additive effects were located. Strategy 1 confirmed such regions and added further positions which gave a less
clear scenario. Correlation between GEBVs estimated with the three strategies and TBVs in progenies without
phenotypes were 0.9237, 0.9000 and 0.9240 for classical, strategy 1 and 2 respectively.

Conclusions: This suggests that the Cp-type selection criterion is a valid alternative to the cross-validations to
define the best constraint for selecting subsets of predicting SNPs by LASSO-LARS procedure.

Background
A method to estimate the SNP (Single Nucleotide Poly-
mophism) effects would be to use the least absolute
shrinkage and selection operator (LASSO) approach [1].
This operator has the desirable feature of including in
the model only a subset of explanatory variables, setting
to zero those that have nil effects. This agrees with the
assumption that many chromosome segments will not
contain QTL (Quantitative Trait Locus) and therefore
have zero effect, and only few are real QTL [2]. The

LASSO is a constrained version of ordinary least squares
which minimizes the residual sum of squares constrain-
ing the sum of absolute values of the regression coeffi-
cients. Then the LASSO solution is the set of SNP
effects that satisfy:
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Where yi is the phenotype of the ith individual; xij is
the genotype of the ith individual at the jth marker; bj is
the allelic substitution effect for the jth marker and t is
the constraint that allows some estimated SNP effects to

* Correspondence: gmusai@agrisricerca.it
Settore Genetica e Biotecnologie, AGRIS-Sardegna, Olmedo 07040, Italy

Usai et al. BMC Proceedings 2012, 6(Suppl 2):S9
http://www.biomedcentral.com/1753-6561/6/S2/S9

© 2012 Usai et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:gmusai@agrisricerca.it
http://creativecommons.org/licenses/by/2.0


be exactly zero. The challenge with implementing the
LASSO approach is how to best choose the constraint
parameter (t) which in turn depends on the size of the
subset of explanatory variables, in this case the number
of SNPs [3].
The LASSO problem can be solved by quadratic pro-

gramming [1] or by Bayesian approaches [4]. The latter
have been implemented in several genome wise selection
(GWS) and QTL detection studies [5,6]. An alternative
way to produce LASSO solution is a modified version of
the Least Angle Regression (LARS) algorithm [7]. This
procedure is a version of traditional forward selection
methods which estimates the effects by successive itera-
tions. For each iteration the SNP with the highest absolute
correlation between genotypes and current residuals is
added to the model. To obtain LASSO solutions the LARS
procedure is modified so that either addition or subtrac-
tion of one marker to the model per iteration may occur.
Usai et al. [8] suggested the LASSO-LARS method to esti-
mate the marker effects for genomic selection including a
cross-validation step to define the best constraint t. With
this approach good results were obtained both in simu-
lated and real dataset. Nonetheless one limitation of
LASSO-LARS is that, as a constrained version of the
ordinary least squares, it cannot estimate the effects for a
number of markers larger than the number of individuals
in the reference population. Thus in real data, where the
reference population size is often relatively limited and for
those traits affected by a large number of QTL, LASSO-
LARS may not be able to predict the effect of all the QTL
contributing to the total genetic variability. Moreover, by
using cross-validations at each replicate the training sam-
ple where SNP effects are estimated is only a portion of
the total reference population. So the number of SNPs
selected at each replication will be smaller than expected
and their average overall replications will underestimate
the true value of the best t.
In this study we propose two alternative strategies to

define the t and compared them with the classical strat-
egy [8].

Methods
Data
A simulated data set of 3,220 individuals generated for
the 15th QTL-MAS workshop was used. The first gen-
eration consisted in 220 founders (20 males and 200).
The second generation consisted in 3,000 individuals
organized in 20 sire families of 150 individuals each and
200 dam families of 15 individuals each. The dam
families were nested in the sire families. The genome
consisted in five chromosomes. Each chromosome was 1
Morgan long and carried 1998 SNPs evenly distributed.
Genotypes were available for all the individuals. Pheno-
types were available only for 2,000 progenies (1/3 of each

sire and dam family) which represented the reference
population. The further 1,000 progenies had genotypes
but no phenotypes and represented the candidate
population.

LASSO-LARS classical strategy
At each cross-validation replication the reference popula-
tion was randomly split into training (T) and validation
(V) samples of equal size. This strategy corresponded to
that suggested by Usai et al. [8] where the 50 % random
splitting was chosen since it gave the lowest t variability
and the highest accuracy of GEBV estimates. At each
replication LASSO-LARS was run on T sample. At each
step of the procedure the genomic breeding values
(GEBV) of V was updated by the current set of SNP effects
estimated on T. When the maximum of the correlation
between the GEBVs and phenotypes of V was reached the
LASSO-LARS was stopped and the number and the iden-
tity of the active SNPs were retained. The procedure was
replicate 1,000 times. Afterwards the average number of
active SNPs was taken as the best value of t. Moreover the
SNP frequency of occurrence (fo) was defined as the pro-
portion of times that a SNP was selected (i.e. with non
zero effect) over all replications.

Strategy 1
The only difference with respect to the classical strategy
was that here the best t was defined as the number of
SNPs which occurred in the cross-validations more than
5% of the times. This strategy was based on the assump-
tion that if a SNP is selected more than expected by
chance it is probable that it affects or is linked to QTL
affecting the traits. The probability of a SNP to be selected
by chance was estimated by permuting 10,000 times phe-
notypes on genotypes and by running LASSO-LARS until
the best t estimated for classical strategy was attained. The
frequency of occurrence of 5% corresponded to a probabil-
ity lower than 0.0001.

Strategy 2
In this strategy the best t was the number of active
SNPs which minimize the value of the Cp-type selection
criterion [7]. Such parameter is commonly used as a
stopping rule for various forms of stepwise regression.
At each kth LASSO-LARS step Cp-type was calculated
as:

Cpk =
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2
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where yi and ŷi are, respectively, the phenotype and
the current predicted value of the ith individual; n is the
number of individual; df is the degree of freedom which
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here corresponded to the number of active SNPs and
se

2 is the residual variance of the complete model, i.e.
the model including all SNPs. The latter was estimated
by a REML procedure running a GBLUP animal model
with ASREML software [9]. The genomic relationship
matrix was built as described by Hayes et al. in 2009
[10]. Since this strategy did not require cross-validations,
LASSO-LARS was run on the whole reference popula-
tion until the minimum Cp-type value was reached and
the corresponding number of active SNPs was taken as
best t.

GEBV estimation
Once the best t were defined, LASSO-LARS was run on
the whole population. For each strategy the procedure
was stopped when the corresponding t SNPs were in
the model. The estimated allelic substitution effects of
the selected SNPs were used to calculate the GEBVs on
the candidate population (1,000 progenies without phe-
notypes). The GEBV accuracy, defined as the correlation
coefficients between true breeding values (TBVs) and
GEBVs, and the regression coefficient of the TBVs on
GEBVs were calculated for each strategy.

Results
Best t definition
The number of SNPs selected at each cross-validation
replication ranged from 15 to 92 and was on average 46.
This value was taken as best t for the classical strategy.
The maximum of correlation between GEBVs and

phenotypes in the validation sample was 0.493 on average
and the corresponding R2 was 0.298. Among the 9,990
available SNPs only 2,169 occurred at least once overall
cross-validations and 189 occurred more than 5% of the
times. The latter value was taken as best t for strategy1.
Figure 1 depicts the profile of the Cp-type criterion for an
increasing number of active SNPs. The minimum was
reached when 64 SNPs were selected and this value was
taken as best t for strategy2.

QTL mapping
Figure 2 shows the absolute values of the effect of the
SNPs selected by LASSO-LARS given the t values
defined by the different strategies. The SNP fo in the
cross-validations is also reported. The average fo of the
SNPs selected by classical strategy was 39.8 % and ran-
ged from 10.4 % to 99.7%. For strategy1 the fo was
11.7 % on average, ranging from 0 to 99.7%. In this case
107 SNPs had an fo lower than 5% and 16 never
occurred in the cross-validations. The SNPs selected
with strategy2 showed an average fo of 30.8% ranging
from 4.4% to 99.7%. Only 3 SNPs had fo slightly lower
then the 5% threshold. Concerning the similarity
between the three SNP subsets, 39 common SNPs were
selected by classical and strategy1; 44 SNPs were
selected by classical and strategy2 and 55 were selected
by strategy1 and strategy2. On the whole 38 SNPs were
selected by all three strategies. All the three strategies
identified quite clearly the five QTL with additive
effects. A less clear localization was observed for the

Figure 1 Cp-type selection criterion profile for increasing number of active SNPs.
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QTL with imprinted effect and the first QTL with epi-
static action. None of the strategies was able to selected
SNPs linked to the second epistatic QTL. These latter
results were expected since LASSO-LARS only accounts
for additive QTL effects. Most of the SNPs selected by
classical and strategy2 were concentrated on the true
QTL position. Finally the number of false detections
enlarged as the SNP subset size increased and was parti-
cularly high for strategy1 where a very unclear scenario
was observed.

GEBV estimation
The candidate population GEBV accuracies corresponding
to the three t estimation strategies are shown in Table 1.
Not relevant differences were observed among strategies.
In particular, the accuracies obtained by classical and
strategy2 were very similar and both outperformed strat-
egy1 of more than 2%. Table 1 also shows the regression
of TBVs on GEBVs, indicating that both classical and

strategy2 GEBVs underestimate the TBVs, whilst strategy1
gave a regression coefficient considerably closer (around
25%) to the target value 1. However, it is important to
point out that some of the QTL had simulated epistatic
and imprinted actions, and LASSO-LARS did not account
for this.

Discussion
Our results demonstrated that LASSO-LARS performs
well estimating SNPs associated to QTL with additive
effects. The detection of QTL with different action was
rather poor. However it suggests the presence of the
imprinted QTL and of the first epistatic QTL. The second
epistatic QTL was neglected since LASSO-LARS just
selects the SNPs which underline the main portion of the
variability explained by both QTL. Concerning the choice
of the best constraint for LASSO-LARS, classical and
strategy2 although based on different procedures gave very
similar results. This suggests that a valid estimation of the
best constraint can be obtained without cross-validation
with a large computing time saving. Indeed, while the
cross-validation procedure took 3 hours and 35 minutes,
strategy2 just took 8 seconds. Nevertheless, the current
data set did not allowed to verify if the constraint estima-
tion based on Cp-type minimization can overcome the
underestimation of t expected with cross-validation. Thus
a study based on a dataset with high ratio between number
of QTL and reference population size is needed. Strategy1

Figure 2 Comparison of SNP effects estimated by classical, strategy1 and strategy2. SNP frequency of occurrence. True QTL positions.

Table 1 Genomic breeding value (GEBV) accuracy (r) and
regression coefficient (b) of true breeding value (TBV) on
GEBV for the three tested strategies

Strategy r(TBV,GEBV) b(TBV,GEBV)

Classical 0.9237 1.2512

Strategy1 0.9000 1.0220

Strategy2 0.9240 1.1877
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seems in general the worst, since most of the selected
SNPs did not correspond to those with the highest fo. This
happened because the complementary among SNPs
selected in the cross-validation was not accounted for.
Indeed if two SNPs are strongly correlated and equally
correlated with the phenotype, they could be alternatively
selected in the cross-validation due to the random sam-
pling. Nevertheless they explain the same portion of var-
iance and when LASSO-LARS runs on the whole
reference population only one of them is selected. In fact
most of the SNPs further selected by strategy1 respect to
the other two were false positives (Figure 2). The presence
of many false positives leads to a lower GEBV accuracy.
The regression of TBVs on GEBVs close to 1 obtained by
strategy1 could be due to the higher weight given to the
QTL with imprinted and epistatic effects.

Conclusions
We conclude that the strategy based on the Cp-type
selection criterion is a valid alternative to the cross-vali-
dations to define the best constraint for selecting subsets
of predicting SNPs by LASSO-LARS procedure.
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