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Abstract

Background: A Bayesian mixed model approach using integrated nested Laplace approximations (INLA) allows
us to construct flexible models that can account for pedigree structure. Using these models, we estimate
genome-wide patterns of DNA methylation heritability (h2), which are currently not well understood, as well as h2 of
blood lipid measurements.

Methods: We included individuals from the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN)
study with Infinium 450 K cytosine-phosphate-guanine (CpG) methylation and blood lipid data pre- and
posttreatment with fenofibrate in families with up to three-generation pedigrees. For genome-wide patterns,
we constructed 1 model per CpG with methylation as the response variable, with a random effect to model
kinship, and age and gender as fixed effects.

Results: In total, 425,791 CpG sites pre-, but only 199,027 CpG sites posttreatment were found to have
nonzero heritability. Across these CpG sites, the distributions of h2 estimates are similar in pre- and
posttreatment (pre: median = 0.31, interquartile range [IQR] = 0.16; post: median = 0.34, IQR = 0.20). Blood lipid
h2 estimates were similar pre- and posttreatment with overlapping 95% credibility intervals. Heritability was
nonzero for treatment effect, that is, the difference between pre- and posttreatment blood lipids. Estimates for
triglycerides h2 are 0.48 (pre), 0.42 (post), and 0.21 (difference); likewise for high-density lipoprotein cholesterol h2 the
estimates are 0.61, 0.68, and 0.10.

Conclusions: We show that with INLA, a fully Bayesian approach to estimate DNA methylation h2 is possible on a
genome-wide scale. This provides uncertainty assessment of the estimates, and allows us to perform model selection
via deviance information criterion (DIC) to identify CpGs with strong evidence for nonzero heritability.

Background
Narrow-sense heritability (h2), traditionally estimated
using twins or other constrained family relationships,
can also be estimated in wider pedigrees using a lin-
ear mixed-model approach [1, 2]. This approach is
well-established for traits having moderate to high h2

[2, 3]. What is less clear is how well these models
perform for traits with low h2, which is the case for
some proportion of cytosine-phosphate-guanine (CpG)

methylation sites genome wide. This is of particular
interest for h2 because it is a ratio of variance compo-
nents, that is, the proportion of phenotypic variance
explained by additive genetic variance. Compared to esti-
mates of the mean, estimates of variance tend to have
large uncertainty.
DNA methylation (DNAm) is an epigenetic mark that

is implicated in many heritable diseases and traits. DNAm
patterns are influenced by the environment, change over
lifetime, and exhibit mitotic heritability [4]. There are
multiple reports of DNAm h2 with CpG-specific estimates
ranging from 0 to 1, and with genome-wide mean or
median estimates ranging from approximately 15 to
30% [5–7].
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Any point estimates of h2 should ideally be accompan-
ied by an assessment of the uncertainty. A Bayesian mixed
model with inference by integrated nested Laplace ap-
proximations (INLA) [2, 8] presents an improvement on
the traditionally used simple, balanced designs (eg, par-
ent–offspring or twin-based correlations) as it can include
the full pedigree structure. Additionally, full posterior in-
ference provides uncertainty for the estimated h2, which is
not obtainable using frequentist methods, and allows an
assessment of whether the true h2 is nonzero via compari-
son of models with and without a genetic component.
In this article, we use three-generation pedigrees from

the Genetics of Lipid Lowering Drug and Diet Network
(GOLDN) [9] to estimate h2 in a fully Bayesian frame-
work. Blood lipid and DNAm measurements were avail-
able pre- and posttreatment with a lipid-lowering drug
(fenofibrate). We first investigate continuous blood lipid
traits with known moderate to high h2 and compare the
Bayesian estimates with previously published frequentist
estimates [10]. Second, we estimate the genome-wide dis-
tribution of DNAm h2.
The Bayesian mixed-model approach provides posterior

distributions and therefore uncertainty for h2, the additive
genetic variance, and the environmental variance. We fur-
ther investigate if it is reasonable to estimate h2 for each
CpG site given the data by performing model selection, to
assess if the genetic component should be included at all.
When the additive genetic variance is truly zero, a linear
mixed model including the family structure will misspecify
the model, making any resultant h2 estimates untrust-
worthy. When h2 is truly nonzero but smaller than the
minimum h2 detectable in a given data set (ie, when the
study is underpowered), we would expect extremely large
standard errors for the h2 estimates.
In this article, our aims are to estimate h2 for (a) blood

lipid traits and (b) genome-wide DNAm using a Bayesian
approach, including a model selection step to identify
CpG sites with strong evidence for nonzero heritability.
We highlight the importance of the model selection step
and of quantifying the uncertainty in h2 estimates.

Methods
Data
Individuals in the GOLDN study having DNAm and
blood lipid measurements, as well as information on gender
and age, were included in the analysis [11]. Genome-wide
DNAm was measured using the 450 K Infinium array at
463,995 CpG sites and was available for 995 and 530 indi-
viduals at pre- and postfenofibrate treatment, respectively.
From the original 463,995 sites available, we removed a list
of known single nucleotide polymorphism–related CpG
sites. Blood lipid levels were available both pre- and post-
treatment for 818 and 861 individuals for triglycerides
(TGs) and high-density lipoproteins (HDLs), respectively.

In our analyses, we use log-transformed TG and HDL (av-
eraged over 2 measurements taken 1 day apart), and simply
refer to these transformed average values as TG and HDL
from here on.
Standard quality control inspection of the DNAm data

showed systematic differences with respect to probe-type
chemistry. We therefore normalized the data with respect
to the probe type using beta-mixture quantile normalization
using the R package wateRmelon [12]. We calculated the M
values for each probe and used these in the analysis.

Statistical model
We estimate h2 in a Bayesian framework using the INLA
package in Rue et al. [8]. Using the following model, we
investigate h2 for TG, HDL, and DNAm in the GOLDN
study pre- and posttreatment:

yi j ηi; σ2e � N ηi; σ
2
e

� �
∀i ¼ 1;…; n with ηi ¼

β0 þ xTi βþ ui

u j σ2
g � N 0; 2σ2gK

� �
with u ¼ u1;…; unð Þ ð1Þ

where y = (y1,…, yn) is the outcome vector, that is,
DNAm for a given CpG, TG, or HDL, for n subjects.
Nðηi; σ2eÞ is the likelihood function for subject i,
where ηi is the linear predictor defining the latent vari-
ables of interest and σ2e denotes the residual unexplained
variance in the model. Fixed effects are the intercept
β0 and β = (β1, β2) corresponding to the effects of age (x1i)
and gender (x2i). Family structure was modeled with u as
a random effect, with distribution Nð0; 2σ2gK Þ, where K is

the kinship matrix calculated based on pedigree informa-
tion using the {kinship2} package in R [13], and σ2g is the

additive genetic variance. We assume default noninforma-
tive priors for all hyperparameters for the genome-wide in-
vestigation of h2 (in particular σ−1

� � Gammað1; 0:00005Þ),
but other priors were also investigated. From this

model, h2 ¼ σ2g
σ2gþσ2e

.

With the deviance information criterion (DIC) [14, 15],
we can investigate the fit of a model to the data and do
model selection. We can compare the DIC of the 2 latent
models:

ηi ¼ β0 þ xTi β ð2Þ
ηi ¼ β0 þ xTi βþ ui ð3Þ

and use the recommended ΔDIC =DIC(2) −DIC(3) > 10
to choose if we should include the genetic component
(ui) or not.
As a result of the setup of INLA, we can only obtain

point estimates of h2 with this model formulation, but
not the marginal posterior distribution. If this is of inter-
est, the following equivalent model formulation must be
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used instead [2]. The nuisance parameter σ20 is introduced
to ensure that σ2e remains identifiable. It is fixed at a small
value, so that it does not absorb much of the variation in
the data and thus does not interfere with σ2g or σ2

e . We

used σ20 ¼ 4:54e−5, which corresponds to log(σ20) = − 10
and was suggested in an earlier publication [2].

yi j ηi; σ2e � N ηi; σ
2
0

� �
∀i ¼ 1;…; n with ηi ¼

β0 þ xTi βþ ui þ εi

u j σ2
g � N 0; 2σ2gK

� �
with u ¼ u1;…; unð Þ

ε j σ2e � N 0; σ2eI
� �

with ε ¼ ε1;…; εnð Þ

Results
Figure 1 shows the marginal posterior distribution of h2

for HDL and TG levels pre- and posttreatment, as well
as for the change (post–pre). The change in blood lipid
levels can be interpreted as the response to treatment.
The model selection step supported the inclusion of ui
in the model and thus estimation of h2 for each case.
The mode estimates of h2 for TG are 0.48, 0.42, and
0.21 for baseline, posttreatment, and change, respect-
ively. Likewise, the mode estimates for h2 for HDL are
0.61, 0.68, and 0.10. Based on point estimates alone,
HDL appears to be more heritable than TG but their
95% credible intervals overlap. TG is more heritable pre-
treatment than posttreatment, but the opposite is true
for HDL. However, the 95% credibility intervals for h2

pre- and posttreatment overlap each other substantially
for both traits.

In Fig. 2, the histogram of point estimates of h2 of
DNAm for 448,040 CpG sites is displayed, for both pre-
and posttreatment. Model selection indicates if there is
evidence for nonzero h2.
For pretreatment, we detect nonzero h2 for 425,791 of

448,040 CpG sites (95.0%). For the CpG sites with strong
evidence for nonzero h2, the mean, median, and inter-
quartile range (IQR) are 0.33, 0.31, and 0.16. In contrast,
for posttreatment we detect nonzero h2 for 199,027 of
448,040 CpG sites (44.4%) with mean, median, and IQR
equal to 0.36, 0.34, and 0.20. Both cases show evidence
of zero inflation and a right skewed distribution of DNAm
h2. Indirectly, we see that GOLDN is underpowered for
detecting h2 of DNAm less than approximately 10 to 15%.
Figure 2 clearly shows a striking difference in the distri-

bution of genome-wide h2 estimates between pre- and post-
treatment. Figure 3 shows the direct pairwise comparison
of the two h2 estimates for DNAm across those CpG sites
with strong evidence for nonzero h2. For these CpG sites,
we observe a moderate Pearson correlation between the
baseline and posttreatment heritability estimates of 0.53.

Discussion and conclusions
In this article, we use a Bayesian approach to estimate h2

for blood lipid levels and DNAm in extended pedigrees,
and show that it is feasible to do genome-wide Bayesian
estimation of h2.
For blood lipids, our pretreatment point estimates

for h2 using the Bayesian approach (h2TG = 0.48 and
h2HDL = 0.61) are comparable to previously reported esti-
mates using other methods [16]. Notably, the 95% cred-
ibility intervals are wide (see Fig. 1). Interestingly, the
response to treatment (change in blood lipid levels from

Fig. 1 Heritability (h2) estimates for high-density lipoprotein (HDL) and triglycerides (TG). Posterior h2 distribution for HDL and TG pre- and
posttreatment, as well as for the change from pre- to posttreatment (“Diff”). The points indicate the 95% credibility region for each h2 estimate
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Fig. 2 Genome-wide heritability (h2) estimates for DNA CpG methylation (DNAm). Histogram of point estimates for DNAm h2 genome wide. The
top panel shows the h2 estimates pretreatment and the lower panel shows the h2 estimates posttreatment. The blue color is for CpG sites with strong
evidence for heritability (“delta DIC >10”) and the red color is for the CpG sites with no evidence for heritability given the data (“delta DIC ≤10”), based
on model selection comparing the models with and without pedigree information [eqs. (2) and (3)]. The two colors are stacked on top, so that both
colors are visible on each bar. The actual height of the zero-stack bar for the posttreatment is 238,165 CpG sites

Fig. 3 Contour plot of correlation of DNA CpG methylation heritability (h2) pre- and posttreatment. The plot is based on the 194,741 CpG sites
that have evidence for nonzero heritability in both pre- and posttreatment methylation measurements
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pre- to posttreatment; see Fig. 1) also appears to be herit-
able. This may have important implications for personalized
medicine, especially if one were able to identify explanatory
variables (genetic or environmental) that predict the indi-
vidual genetic value (ui).
The genome-wide distribution of DNAm h2 (as ascer-

tained by the Illumina Infinium 450 K chip) appears to
follow a 2-group mixture model with a h2 = 0 component
and a nonzero component following a smooth, unimodal
right skewed distribution. The mixture proportion is strik-
ingly different in the pre- and posttreatment (see Fig. 2). It
is unlikely that treatment with fenofibrate could cause
substantial genome-wide changes in DNAm h2. It is much
more likely that technical differences between the DNAm
time points explain the difference [17].
The h2 estimates we present in this article are gener-

ally similar to earlier genome-wide results in different
populations [5, 7]. These previously published studies also
show zero inflation, although the reported proportions
vary substantially, from 5 to 17%. All show right-skewed
distributions, but with slightly different modality. We re-
port the median, h2pre = 0.31, h2post = 0.34, in the GOLDN
study only for CpG sites with strong evidence for nonzero
h2 (ie, ΔDIC > 10). This is higher than previously reported,
although this is to be expected if previous reports included
the zero component in the calculation of the median.
With the zero component included, our median estimates
decrease to h2pre = 0.30, h2post = 0.0036.
A Bayesian model holds some advantages over a fre-

quentist model when estimating h2. The most notable
difference is that a Bayesian model can estimate the full
posterior distribution of the parameters in question. This
includes the random effect variance parameters, which
allows more direct assessment of the uncertainty of the
random-effect estimates—and thus of the h2 estimates—
than could be achieved with classical mixed-effects models.
For example, by comparing posterior credibility intervals
for h2 pre- versus posttreatment, we can determine if the h2

changes are a result of treatment (see Fig. 1). In addition,
model selection can be performed in a principled way by
DIC or Bayes factors to assess if the data provide sufficient
evidence for nonzero h2. When the h2 is truly zero, the gen-
etic values ui should not be included in the model, and
therefore a model without the genetic values should be
favored. Indeed, DIC-based model selection favored the
model without random effect in the vast proportion of
CpG sites for which h2 was estimated to be close to zero.
An important limitation in our study is the lack of

information on shared households to estimate the effect
of shared environment. This likely results in an overesti-
mation of h2. The CpG sites on the 450 K array are a
nonrandom selection of CpG sites with a bias toward
CpG islands that often have regulatory function. This is
important to consider, as an oversampling of biologically

important CpG sites could result in a biased estimation
for nonspecific genome-wide DNAm h2.
In this article, we use a Bayesian approach to estimate

h2 in extended pedigrees and show the importance of
using model selection to determine if there is strong evi-
dence of nonzero h2 given the data. Future work should
focus on simulation studies comparing the frequentist and
Bayesian approaches, with particular focus on traits having
low h2..
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