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Abstract

DNA methylation levels at cytosine-phosphate-guanine (CpG) sites with multimodal distributions among different
samples have been reported recently. One possible explanation for such variability is that genetic variants might
affect epigenetic variation. One obvious case is that mutations such as single-nucleotide polymorphisms (SNPs)
interrupt CpG sites, resulting in different DNA methylation levels for different genotypes. However, the relationship
between genetic variations and epigenetic differences has not been studied thoroughly, partially because of the
lack of powerful and robust methods to survey genome-wide CpG sites with multimodal methylation level
distributions (mmCpGs). In this article, we develop a Gaussian mixture-model clustering (GMMC)–based approach to
systematically detect all mmCpGs across the genome based on the GAW20 data set. In total, 3785 and 3847
mmCpGs have been identified in pre- and posttreatment data sets, respectively. Result analysis shows that
approximately 68 to 70% of mmCpGs detected from unrelated individuals either have direct overlaps with SNPs or
have associations with nearby SNPs, suggesting a strong correlation between SNPs and mmCpGs. Comparison with
an existing approach illustrates that our GMMC-based method is more consistent when the number of samples
decreases. In conclusion, mmCpGs may reveal important connections between genetics and epigenetics and they
should be carefully identified and evaluated.

Background
DNA methylation is one of the most widely used epigenetic
marks and plays an important role in gene regulations,
which may result in phenotypic differences among different
individuals, as well as phenotypic differences of the same
individual, before and after treatments [1]. Although epi-
genetics is traditionally defined as heritable changes in gene
activities that do not involve genetic mutations, recent
studies suggest associations exist between genetic variants
and differences in DNA methylation levels [2, 3].
Large-scale genome-wide DNA methylation profiling (e.g.,
using Illumina Infinium Human Methylation450 Beadchip,

aka Illumina 450 K), together with genome-wide genotyp-
ing assays using single-nucleotide polymorphism (SNP) ar-
rays, enables studies of associations between genetic
variations and differences in DNA methylation levels.
Even though many studies have treated DNA methyla-

tion levels as a quantitative trait and performed so-called
methylation quantitative trait locus analysis, two recent
studies [4, 5] have investigated multimodal distributions of
methylation levels at cytosine-phosphate-guanine (CpG)
sites, primarily as a quality control step to correct methy-
lation signals from Illumina 450 K chips. Daca-Roszak et
al. [4] studied relationships between SNP genotypes and
methylation levels of 96 CpG sites from European and
Asian populations. They observed multimodal distribu-
tions among individual samples for CpG sites with SNPs.
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However, their study was limited to a very small subset of
CpG sites and only considered CpG sites that physically
overlapped with SNPs. In another attempt, Andrews et al.
developed an interval-based clustering method called
Gaphunter to identify CpG sites with multimodal distribu-
tions (mmCpGs) [5], which was implemented in the Bio-
conductor package minfi [6]. Gaphunter first sorts
individual DNA methylation levels of candidate CpG sites
and then groups them into clusters with predefined
methylation-level thresholds. An optional post-processing
step can be used to exclude outlier-driven clusters, which
are defined as clusters with smaller sizes relative to the
total sample size and the size of the largest cluster. This
simple algorithm is fast and works well for moderate-size
data sets with little experimental measurement noise of
methylation levels. The authors also explored applications
of mmCpGs such as probe quality control and population
stratification adjustment. However, threshold-based ap-
proaches such as Gaphunter are sensitive to noise levels
and sample size.
To overcome those limitations, we propose a more

generic and more robust clustering method to identify
mmCpGs. The method is based on a Gaussian mixture
model and we apply it to the GAW20 data sets to iden-
tify mmCpGs. We further check the relationships be-
tween SNPs and mmCpGs in terms of direct overlaps of
their genomic locations, as well as statistical associations
between mmCpG clusters and genotypes of SNPs that
are physically close to mmCpGs. Analysis result shows
that approximately 68 to 70% of mmCpG sites are asso-
ciated with some SNPs within their 100 kbp neighbor-
hood, suggesting high concordances between mmCpG
clusters and individual genotypes. In comparison with
Gaphunter, results show that our approach is more ro-
bust and more stable than that of Gaphunter.

Methods
Data
In this study, we analyzed the genome-wide DNA
methylation data before treatment and after treatment,
as well as dense SNP genotype data provided by
GAW20. There are 995 individuals from 182 families in
the pretreatment methylation data set and 530 individ-
uals from 153 families in the posttreatment methylation
data set. Among the 1525 individuals, 823 have been ge-
notyped. Of the individuals in the pretreatment dataset,
717 have both methylation and SNP data; in the post-
treatment data set, 507 individuals have both methyla-
tion and SNP data. We performed mmCpG predictions
on all individuals with methylation data, separately for
the pretreatment and posttreatment data sets. Because
of time limitations, we randomly picked 1 member from
each family to assess associations between mmCpGs and
genotypes. Association between mmCpGs and SNPs in

related individuals will be examined in future studies.
The number of CpG sites included is 463,995. The DNA
methylation level of each CpG site in an individual is a
numeric value between 0 and 1. The SNP array data
consists of 718,566 SNPs. The genotype data are defined
as 0, 1, or 2, representing the number of copies of the
coded allele. Because genotype and DNA methylation
data may contain missing value for some SNPs or CpG
sites, we only include those individuals who have both
genotypes and DNA methylation information when as-
sociating cluster labels with genotypes.

Gaussian mixture-model clustering
The goal of our method, Gaussian mixture-model clustering
(GMMC), is to identify clusters of individuals that have dis-
tinct distributions of DNA methylation levels for each CpG
site without using any prior knowledge of genotypes or phe-
notypes. Gaussian mixture model (GMM) is one of the most
widely used model-based clustering algorithms that is
suitable for identifying cluster structures from a mixture of
multiple distributions. A GMM is a weighted sum of M
component Gaussian densities as shown in formula below,

p xjλð Þ ¼
XM

i¼1
wig xjμi; σ2i

� � ð1Þ

where wi is the weight of component i, and

g xjμiσ2
i

� �
; i ¼ 1;⋯;M

are the component Gaussian densities.
The assumption is that when methylation levels are af-

fected by genotypes, each distinct genotype corresponds to a
different distribution. In a population with different types of
genotypes, their methylation levels will exhibit the
characteristics of a mixture distribution. In our study, we use
the mixtools [7] to perform GMMC, which will estimate
model parameters for each cluster using the
Expectation-Maximization algorithm for a given number of
clusters. It also provides posterior probabilities of a sample
belonging to each of the clusters. An evaluation metric, such
as Bayesian information criterion (BIC) and log-likelihood of
the mixture-model, can be used for model selection.

Detection of multimodal CpG sites
To determine the best number of clusters, we try differ-
ent numbers of clusters iteratively and determine the
best model using the BIC criteria. More specifically, we
apply the following algorithm:
0. Starting with k = 1, calculate BIC1 based on uni-

modal GMM1. BEST_MODEL =GMM1.
1. If k >MAX_K, stop iteration.
Otherwise, k = k + 1. Apply GMMC with given k com-

ponents. Obtain BICk and GMMk.
2. If BICk > BICk − 1 + BIC_INC_THRESHOLD, BEST_

MODEL =GMMk. Continue to step 1.
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Otherwise, stop iteration.
Given the property of our specific application, we set

the MAX_K as 3, corresponding to the 3 distinct geno-
types of some SNPs that are potentially associated with
the mmCpG. The BIC incremental threshold (BIC_INC_-
THRESHOLD) is used to control the model complexity. A
larger number of clusters are meaningful only if it’s the
larger number’s BIC is substantially higher than the BIC
with a smaller number of clusters. In practice, a higher
value of the threshold will allow the method to be less
sensitive. We set BIC_INC_THRESHOLD= 100 in our
analysis so that our results are more conservative.
Once the model is fixed, each individual is assigned to

the cluster for which the posterior probability is highest.
Our method also incorporates a postprocessing step that
uses several thresholds to filter out low-quality clusters.
First, the largest cluster cannot be too big. If the fraction of
the largest cluster is greater than 1−OUT_CUTT, where
OUT_CUTT is a user-specified parameter, the mmCpG will
be excluded from further analysis. Second, samples within
each cluster should have small variance, controlled by a
threshold MAX_STD for the maximum allowed standard
deviation in each cluster. Finally, we require that cluster
centers should be separable from each other, which is con-
trolled using a threshold MIN_MEAN_DIFF. In our study,
we setMAX_STD= 0.1 andMIN_MEAN_DIFF = 0.2.

Associating GMM cluster labels with genotypes
To study the relationships between genotypes and
mmCpGs, we evaluated genotype data and GMM cluster
labels together to assess the strength of associations. In our
study, we included all SNPs located less than 50 kb on ei-
ther side of an mmCpG site. For each pair of a SNP and an
mmCpG, we first constructed the contingency table for 3
genotypes and 3 cluster labels. Then a chi-square p value
was calculated and corrected by Bonferroni correction for
multiple testing. Among all the nearby SNPs around an
mmCpG, only the SNP with the minimum p value is con-
sidered as the measure of SNP-mmCpG association.
Finally, a critical value of 0.001 (after Bonferroni correction

for multiple testing) was used to determine if an mmCpG
has strong association with at least 1 nearby SNP.

Results
Genome-wide survey of mmCpG sites in the GAW20 data
set
We applied our GMMC-based method on both pretreat-
ment (995 individuals) and posttreatment (530) Illumina
450 K data sets and detected 3785 and 3847 mmCpGs, re-
spectively. A significant majority of them (2965 mmCpGs)
were found in both data sets. Of the mmCpGs, 820 and
882 were found unique in pre- and posttreatment data sets,
respectively. To compare our method with Gaphunter, we
also applied Gaphunter on the same data sets. Gaphunter
identified 4313 and 5632 mmCpGs in pre−/posttreatment
data sets, respectively. Approximately 78% (pretreatment)
and 91% (posttreatment) of mmCpGs identified by our
method were also included in Gaphunter result. Moreover,
the number of mmCpGs identified by our method alone is
much smaller than the number of mmCpGs identified by
Gaphunter alone, which indicates that our method is much
more conservative than Gaphunter (Fig. 1). To evaluate the
sensitivity to sample size of both methods, we randomly
picked different numbers of individuals from all individuals
in the pretreatment DNA methylation data and applied
both methods on chromosome 21 of the sub-data sets. Our
analysis shows that Gaphunter has many more mmCpGs
with small sample sizes and the number of mmCpGs iden-
tified decreases as the sample size increases (Fig. 2). In con-
trast, our method is very stable for all tested sample sizes.
Many of the reported mmCpGs by Gaphunter when using
small sample sizes are likely false positives. In summary, re-
sults indicate that our method is more conservative with
small sample sizes and more stable than Gaphunter.

Association between mmCpGs and SNPs
To investigate the relationships between mmCpGs and
SNPs, we separate mmCpGs into two categories: (a)
mmCpGs that have a SNP directly overlapping with it

Fig. 1 Venn diagram of GMMC and Gaphunter results on the pretreatment (a) and posttreatment (b) data set

Hu and Li BMC Proceedings 2018, 12(Suppl 9):36 Page 177 of 258



Fig. 2 Number of mmCpGs detected by GMMC and Gaphunter in different sample sizes

a

b

Fig. 3 a an example of an mmCpG with a genotyped SNP physically overlapped with its location. Each point represents an individual. b an
example of a non-mmCpG with a genotyped SNP physically overlapped with its location. Distributions of different genotype groups are similar
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(either at C position or G position); and (b) mmCpGs with
no directly overlapped SNPs, but which have strong associ-
ations with some SNPs in close physical proximity. Because
family structure may have impact on correlation between
genotype and methylation level, we further conducted ana-
lysis on unrelated individuals (182 pretreatment/153 post-
treatment), which detected 3014 and 3128 mmCpGs in
pre- and posttreatment data sets, respectively. There are in
total 453 CpG sites directly overlapping a SNP; 180 of
which are detected as mmCpGs in pretreatment datasets
and 190 are detected in posttreatment data sets. Figure 3
shows examples of an mmCpG with overlapped SNPs and
a non-mmCpG site with overlapped SNPs.
In addition to direct overlaps at their locations, nearby

SNPs may affect/interact with mmCpGs. We examined
SNPs located within 50 kb on either side of each CpG site
(100-kb window). By matching genotypes and GMM cluster
labels, we measured the association between mmCpGs and
their nearby SNPs based on a contingency table. Results
show that approximately 68 to 70% of mmCpGs in both
pre- and posttreatment data sets are associated with at least
one of the nearby SNPs (Table 1). This observation supports
our hypothesis that most of mmCpGs are somehow affected
by SNPs. Moreover, we found that the most associated SNPs
were located within 20 kb of the mmCpGs (Fig. 4).

Discussion
We have proposed a novel GMMC-based method to detect
genome-wide mmCpGs generated from Illumina 450 K
chips. We applied this method on the GAW20 data set and
found that the majority of mmCpGs are associated with
SNPs that are either directly overlapping with CpG sites or
are in close proximity to CpG sites. Empirical analysis dem-
onstrates that our method is more stable than Gaphunter, a
thresholding-based method. The ideas that underlie
threshold-based clustering and model-based clustering are
quite different. Threshold-based methods such as Gaphun-
ter use a fixed cutoff value to draw a boundary to separate
data points, which may not be able to capture characteris-
tics of different clusters. First, the choice of cutoff values is
mostly arbitrary. The same cutoff values may not be valid
in different data sets or, even worse, they may not be valid
for different CpG sites in the same data set, because methy-
lation level distributions of different CpG sites may have
different characteristics, that is, some CpG sites have larger
gaps between clusters than other CpG sites. Moreover, the
cutoff values can be quite sensitive to sample sizes. When

the sample size is small, the distribution of DNA methyla-
tion levels among individuals will be sparse and the
within-cluster distances may be big. Threshold-based
methods are prone to false positives. When the sample size
is large, the distribution is dense and clusters may have
overlaps, making it hard for threshold-based approaches to
correctly cluster samples. Unlike threshold-based methods,
model-based clustering methods, including our proposed
GMMC method, are designed to obtain models that fit the
distributions and can naturally capture the characteristics
of cluster structures. Consequently, model-based clustering
methods usually provide more accurate results. In addition,
the GMM can detect clusters with identifiable overlaps.
The current study mainly focused on detection of

mmCpGs. Our findings suggest that there might be some
connections between genetics and epigenetics. One should
not treat mmCpGs as irregularities and filter them out from
further analysis. Instead, careful characterization after iden-
tification is needed to better understand the biological sig-
nificance of mmCpGs. In the future, we will investigate the
association between mmCpGs and genotypes and explore
how these mmCpGs might be related to phenotypes.

Conclusions
A Gaussian mixture-model clustering algorithm was de-
veloped and applied on the GAW20 data set to detect
CpG sites with multimodual methylation levels. The re-
sult of our analysis shows that a large number of de-
tected mmCpGs either directly overlap with SNPs or
have strong associations with nearby SNPs, suggesting
correlations between genetic mutations and methylation
level variations.

Table 1 Summary of mmCpGs pre- and posttreatment

mmCpG_pre % mmCpG_post %

All result 3014 – 3128 –

p≤ 0.001 2073 68.78 2207 70.56

p > 0.001 941 31.22 921 29.44

Fig. 4 Distance distribution from mmCpG sites to their
associated SNPs
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