®)
BNMC Proceedings BloMed Cetl

Proceedings

Constructing gene association networks for rheumatoid arthritis
using the backward genotype-trait association (BGTA) algorithm
Yuejing Ding!, Lei Cong!, Iuliana Ionita-Laza?, Shaw-Hwa Lo! and

Tian Zheng*!

Address: 'Department of Statistics, Columbia University, New York, New York 10027, USA and 2Department of Biostatistics, Harvard School of
Public Health, Boston, Massachusetts 02115, USA

Email: Yuejing Ding - yding@stat.columbia.edu; Lei Cong - congl@stat.columbia.edu; Iuliana Ionita-Laza - iionita@hsph.harvard.edu; Shaw-
Hwa Lo - slo@stat.columbia.edu; Tian Zheng* - tzheng@stat.columbia.edu

* Corresponding author

from Genetic Analysis Workshop 15

St. Pete Beach, Florida, USA. | |-15 November 2006
Published: 18 December 2007

BMC Proceedings 2007, 1(Suppl 1):S13

This article is available from: http://www.biomedcentral.com/1753-6561/1/S1/S13

© 2007 Ding et al; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Rheumatoid arthritis (RA, MIM 180300) is a common and complex inflammatory
disorder. The North American Rheumatoid Arthritis Consortium (NARAC) data, as part of the
Genetic Analysis Workshop 15 data, consists of both genome scan and candidate gene studies on
RA patients.

Results: We applied the backward genotype-trait association (BGTA) algorithm to capture
marginal and gene X gene interaction effects of multiple susceptibility loci on RA disease status. A
two-stage screening approach was used for the genome scan, whereas a comprehensive study of
all possible subsets was conducted for the candidate genes. For the genome scan, we constructed
an association network among 39 genetic loci that demonstrated strong signals, |9 of which have
been reported in the RA literature. For the candidate genes, we found strong signals for PTPN22
and SUMO4. Based on significant association evidence, we built an association network among the
loci of PTPN22, PADI4, DLG5, SLC22A4, SUMO4, and CARD!5. To control for false positives, we
used permutation tests to constrain the family-wise type | error rate to 1%.

Conclusion: Using the BGTA algorithm, we identified genetic loci and candidate genes that were
associated with RA susceptibility and association networks among them. For the first time, we
report possible interactions between single-nucleotide polymorphisms/genes, which may be useful
for biological interpretation.
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Background

Rheumatoid arthritis (RA) is a heterogeneous disease with
a complex genetic component. Previous studies identified
multiple genetic regions that might be associated with RA.
Amos et al. [1] identified strong linkage evidence on the
major histocompatibility complex (MHC) region, 2q33
(CTLA4) and 11p12 in a genome scan. Plenge et al. [2]
selected 14 genes that may be associated with RA or
related autoimmune disorders and carried out a case-con-
trol study on these candidate genes, with significant
results on PTPN22, CTLA4, and PADI4.

A common approach used in most association studies is
to search, in a marker-by-marker fashion, for loci in asso-
ciation with the disease. This approach precludes consid-
eration of interactions between genetic loci, resulting in
loss of information that is important in understanding
complex traits. On the other hand, consideration of high-
dimensional interactions makes the computational com-
plexity unrealistically high for large-scale studies. To
address these difficulties, Lo and Zheng [3,4] showed the
backward haplotype transmission association (BHTA)
method for case-parent trios to be powerful for studying
complex human disorders because it efficiently uses mul-
tilocus information. The method was extended in the
backward genotype-trait association (BGTA) algorithm
for case-control designs by evaluating association infor-
mation on unphased multilocus genotypes [5]. In this
paper, we applied BGTA to the Illumina genome scan
(studied by Amos et al. [1]) and the candidate gene data
(studied by Plenge et al. [2]) provided by NARAC as part
of Problem 2 of Genetic Analysis Workshop 15.

http://www.biomedcentral.com/1753-6561/1/S1/S13

Methods

Data processing

The Illumina data consist of 5407 single-nucleotide poly-
morphisms (SNPs) genotyped from 642 Caucasian fami-
lies containing 1371 affected siblings with RA [1]. To
apply the BGTA method, we first designated all unaffected
people as our control group (n = 349). For families that
did not contribute a control, we selected one case (n =
474). The level of missing values for the SNPs was <5%.
The candidate gene data consist of 839 cases and 855
unrelated controls [2,6]. Genotypes on 20 SNPs in 14 can-
didate genes were included (Table 1). In Plenge et al. [2],
the candidate gene data were checked for errors (~0.5%)
and were found to be in Hardy-Weinberg equilibrium.
There were 17 SNPs with less than 3% missing data.
152240340 (PADI4) had ~65% missing (higher in the con-
trols), which could potentially affect the results, and
151061622 and 5509_5511delCAA had ~15% missing
(also higher in the controls). For both data sets, we
imputed the missing genotypes using fastPhase [6].

BGTA screening

Given k SNP markers, there are 3% possible unphased gen-
otypes. The association information score - the genotype-
trait distortion (GTD) statistic - used by BGTA is defined
on the sum of the squared difference between individual
genotype's sample relative frequency among the cases and
the controls, i.e.,

GTD = (g +1Yn, )2 52 (1 ng =, )

Table I: 20 SNPs genotyped on the loci of 14 putative RA candidate genes

SNP Gene Locus
rs247660 | PTPN22 Ip13.3-13.1
CTeé0 CTLA4 2q33
rs1061622 TNFRSFIB 1p36.3-36.2
rs2240340 PADI4 1p36.13
rs6149307 HAVCRI 5q33.2
5509_5511delCAA HAVCRI 5q33.2
IGR2096ms| IBD5 5q31.1
IGR3084ms| IBD5 5q31.1
IGR3138msl IBD5 5q31.1
rs2073838 SLC22A4 5q31.1
rs31480 IL3 5q31.1
rs2243250 IL4 5q31.1
rs237025 SUMO4 6q25
rs577001 SUMO4 6q25
rs1248696 DLG5 10q23
HugotSNP12ms3 CARDI5 16q21
HugotSNP8ms2 CARDI5 16q21
HugotSNP13ms2 CARDI5 16921
rs2268277 RUNXI 219223
rs755622 MIF 22q11.23
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asymptotically under the null hypothesis of no associa-
tion. If a marker is removed from the studied set, the GTD
score might decrease or increase, thereby reflecting the
contribution of that marker. The genotype-trait associa-
tion (GTA) score for marker M given a current set of mark-

ers is defined as GTA(M) = 3AGTD + A, where AGTD is

the GTD score without M minus the GTD with M, and A
is an adjusting term defined in [5] that makes GTA have
expectation 0 when none of the markers in the subset is
associated with the trait. When M is not associated with
the disease but some of the selected markers are, GTA is
positive, indicating an information gain that occurs when
M (i.e., noise) is removed. If M is associated with the trait,
GTA will be negative, indicating an information loss, and
the magnitude of its value reflects the importance of M.

Based on GTA, BGTA is a backward greedy search algo-
rithm that removes markers that lead to information gain
until no further gain is possible (see the flowchart in Fig-
ure 1). BGTA screening returns a small "optimal" cluster
of markers with the peak GTD score. Herein, a subset is
deemed BGTA-irreducible if no marker can be removed
without lowering the GTD score. For a large number of

5407 SNPs to screen

k4
Stage I: Sedect 1000 BGTA-irreducidle pairs with top GTD scores

4
707 unique SNPs 1o screen

4
Stage II: B = 700000 BGTA screenings on random SNP subsets

Y
700000 returned local optimal SNP clusters with GTD scores

Y
Select important cluster with 1op GTD scores based on
FDR estimated from permutatons

4
Construct association network based on
important clusters selected

Figure |
Flowchart for the analysis of the genome scan data.
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markers, such a backward screening is not informative ini-
tially due to sparseness issues in high dimensions. Thus,
BGTA has been implemented to screen a large number of
random marker subsets [5]. In this paper, GTD scores of
retained local optimal clusters are recorded, which meas-
ure the information content of each retained local opti-
mal cluster. Local optimal clusters of SNPs with GTD score
higher than a selection threshold are selected as impor-
tant.

Two-stage SNP selection

To overcome the computational complexity of analyzing
5407 SNPs while also considering interactions, we devel-
oped a two-stage SNP selection process (see Figure 1 for a
flowchart). We assume that SNPs with high-dimensional
interaction information will show some signal in pairwise
GTD scores (this is an assumption that reduces computa-
tional burden). In Stage 1, we selected 1000 BGTA-irre-
ducible pairs of SNPs with top GTD scores, which also
included 22 SNPs with top marginal GTDs. This yielded
707 unique SNPs for the second stage, where we per-
formed a regular BGTA screening on 700,000 random
subsets of 8 SNPs. For discussion on the size of the subsets
and the number of repeats, see Zheng et al. [5].

Candidate gene study

For the candidate gene set, we evaluated a total of 220 - 1
GTD scores on all possible subsets of 20 SNPs (except for
the empty set) to enumerate GTD's distribution for each
subset size. Then we performed 30,000 greedy BGTA

BGTA screening
Repeat B times

v
Random select a subset of 8 SNPs

k4

Compute GTA for each
remaining SNP

A4
Remove the SNP
h
M;:i:%::" Yes p with the highest GTA
po! (highest gain in GTD)
No
Y

Return the current subset as a
local optimal SNP cluster
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screenings on subsets of 8 SNPs to identify local optimal
BGTA-irreducible SNP clusters.

Selection threshold and evaluation of significance

To estimate the distribution of GTD scores of local opti-
mal BGTA-irreducible SNP clusters under the null hypoth-
esis that no SNP is associated with the trait, we permuted
the labels of disease status to create a simulated data set.
For the two-stage study, we examined the GTD score den-
sity of returned clusters in the second stage from complete
two-stage analyses of 50 permuted data sets. False discov-
ery rate (FDR) was controlled by comparing the observed
real density and the density under the null hypothesis (see
[7-9]). For the candidate gene study, we set the selection
threshold for each SNP subset size to be the maximum
among 100 permuted replicates (the red dotted line in
Figure 2) and identified local optimal BGTA-irreducible
SNP subsets as significant at the 1% family-wise level. The

http://www.biomedcentral.com/1753-6561/1/S1/S13

relatively small number of permutations was due to the
high computational burden of the analytical approach.
This would result in non-trivial margin of error for the sig-
nificance levels evaluated, which needs to be taken into
consideration when interpreting the results.

Association network construction

For subsets identified with more than one SNP, we con-
structed a graphical network using the graph exploration
system GUESS [10] (Figures 3 and 4). A direct edge indi-
cates a two-SNP cluster. For clusters with more than two
SNPs, a non-SNP node was created with all involved SNP
connected to it.

Results and discussion

Genome scan results

From the two-stage screening of the Illumina data, clusters
of SNPs with high GTD scores were returned as important.

o _| +— Data Maximums
£ -1 —— Permutation Median Maximums
b g ===+ Mean under the null
7 Selection threshold
W
o y
(V] 0O 00-01
g 0 01-02
{ —{ 0 02-03
X = 0O 03-04
s 0O 04-05
O 05-06
0O 06-07
e R - -- - 0O 07-08
0 - i = ' O 08-09
4 4 4 == I @ 09-10
——— —__*4 - - )
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| | T I
2 4 6 8 10
size of subsets
Figure 2

Evaluation of significance of in the RA candidategene study. For subsets of a given size, we plotted the highest GTD
score (red solid line) with a 95% confidence interval (with Bonferroni correction for 220 - | multiple comparisons). The top
GTD scores for sets of two to eight marker sets were significantly higher than the expected value under the null hypothesis
(black dotted line at |). Based on 100 permuted data sets, at different subset sizes, the black solid line displays the median max-
imum GTD scores and the vertical bars are the 95% confidence interval of permutations. For each permutation, we also calcu-
lated Bonferroni-corrected 95% confidence intervals for the maximum GTD scores. The blue shading indicates the coverage of
these 100 confidence intervals at each subset size (the darkest being 0.9 to | (or 90 to 100%) and the lightest being 0.0 to 0.1

(or 0 to 10%)).
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Color of loci node: Chromosome

Black circle with number: n-way interaction
Black edge: 2-way interaction

Green edge: 3-way interaction

Purple edge: 4-way interaction

Genome-wide association network for rheumatoid arthritis. A different color represents each chromosome.

Based on 50 permutations, we estimated the FDR as
described by Storey and Tibshirani [7] at different GTD
levels. Due to the small number of permutations, the esti-
mated FDR has a high level of uncertainty for small FDR
values. Therefore, we set the selection threshold of GTD to
control for FDR at 30% for the association network con-

struction while indicating in Table 2 SNPs with stronger
signals at FDR = 15%. Using the individual clusters, we
built an association network (Figure 3) based on the joint
return clusters of those loci. One central and four satellite
subnetworks are notable, and a number of loci seem to
serve as hubs (e.g., 1p36.22 (PADI4), 2q33.3 (CTLA4),
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Association network of candidate gene loci with significant
signals.

5p15.33, 8q24.23, 14q11.2, 14q12, and 18p11.21),
which have a large number of interaction edges with other
loci. The literature suggests that seven out of these eight
loci have previously been found to be associated with sus-
ceptibility to RA. All 39 marker loci in the association net-
work of Figure 3 are listed in Table 2, about half of which
were previously reported in the RA literature. One impor-
tant RA susceptibility gene, PTPN22, was not among these
39 loci, but its signal was right below our selection thresh-
old.

Candidate genes results

For the candidate gene data, we studied all possible sub-
sets of SNPs and identified eight significant BGTA-irreduc-
ible subsets on seven SNPs after controlling for family-
wise type I error. The marginally significant (one-marker
subset) SNPs are 1s2476601 (PTPN22), and rs237025 and
1s577001 (both at the locus of SUMO4). The significantly
associated subsets with two or more SNPs represent possi-
ble interactions between these candidate genes in affect-
ing the risk of developing RA. In Figure 4, red edges
indicate interactions involving more than two SNPs,
whereas blue edges indicate pairwise interactions between
two SNPs. As previously identified in [2], we found
PTPN22 and PADI4. However, the SNP at locus PADI4
has a high level of missing values, so results at this locus
should be interpreted with caution.

Tables 3 and 4 illustrate a three-way interaction among
SLC22A4, SUMO4, and CARD15 identified in our results.
Table 3 lists the actual genotype distribution on these
three SNPs (percentages out of 839 cases and 855 controls
that have observed values). Table 4 displays the deviance
table from the logistic regression between the disease sta-
tus and these three SNPs including all possible interac-
tions. Deviance can be directly used as a likelihood-ratio
chi-squared test statistic that evaluates the contribution of
each additional model term (main effect or interaction)
[17]. From the logistic regression, the three-way interac-
tion identified by BGTA is significant even when the main

http://www.biomedcentral.com/1753-6561/1/S1/S13

Table 2: Loci with a high joint GTD score identified in the

genome scan

Locus

Reference

1p36.22 (PADI4)?
1923.1

2212

2pl2

2ql2.12

2q33.1-33.3 (CTLA4)2
2q37.3

3q27.2

[1,11,12,2]

(1]
[12]
[1.2]

[14]

49283
4q34.2

5p15.33-15.322 [
5q23.1°

6p25.2

6p2! (HLA-DRBI): OMIM
6ql3 [,
6ql4.12 [,
6ql15 [,
6q16.1-16.22 [,
6q23.2

7q21.3

8p23.12 [13]
8pl2

8q24.23

9922.2-22.31a

10pl5.3-15.22

10q26.13

11925

12p13.32-1331a

12q24.22-24.32

l4ql1.22 [13]
14q12: [13]
14g32.11-32.22

15q22.312 [15]
17q25.32

18pl1.21a [16,12]

[16]
19q13.43
20p12.12 [12]
21q21.1 (RUNX )2 OMIM
22q13.33

aMultiple SNPs in LD were found in significant clusters.
bThis locus is 10 Mb away from SLC22A4.

effects and two-way interaction terms were already
included in the model. More interestingly, only one SNP
at the SUMO4 locus demonstrated a significant main
effect, indicating that contributions from SLC22A4 and
CARD15 are mostly through interactions.

Combining the results from the genome scan and the can-
didate genes results, PTPN22 had the strongest evidence as
an RA susceptibility gene. SLC22A4 also showed up in the
results of both studies.
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Table 3: Genotype distributions of identified SNPs on SLC22A4, SUMO4, and CARD |5 among cases and controls?

Percentage among cases or controls

Genotype Cases

Controls

11,212,213
171,212, 3/3
I/1,2/4,2/3
I/1,2/4, 3/3
171, 4/4, 2/3
171, 4/4, 3/3
113,212,213
113,212, 3/3
113, 2/4, 2/3
113, 2/4, 3/3
1/3, 4/4, 2/3
1/3, 4/4, 3/3
3/3,2/2,2/3
3/3,2/2,3/3
3/3,2/4,2/3
3/3,2/4, 3/3
3/3, 4/4, 2/3
3/3, 4/4, 3/3 9

— W O 08 O 00 O O OO © ©o o

a )
© R~ o

- N O NO O — O O o o — o

—_ w w
- ° x o

aSNPs identified: rs2073838 (SLC22A4), rs577001 (SUMO4), HugotSNP12ms3 (CARD 15)

Conclusion

In this paper, the BGTA approach was applied to identify
important genetic loci and gene x gene interactions on
susceptibility to RA. Different analytical strategies were
tailored for these two data sets of different nature, illus-
trating the applicability of BGTA and the GTD statistic to
different studies. Using the BGTA method, both marginal
and gene x gene interaction information were extracted
and reflected in the GTD scores. Under a general analytical
framework, both analyses result in association networks
constructed based on gene clusters with significant associ-
ation to RA. To overcome the dimensionality problems of
a genome scan, we imposed a two-stage scheme based on
BGTA screenings. For a small number of candidate genes,

we used GTD directly on subsets of genes to identify clus-
ters that were significantly associated with RA disease sta-
tus. We addressed the multiple comparisons issue using
the most direct permutation-based evaluation and con-
trolled the FDR and the family-wise type I error rate. Both
association networks identified in this paper demon-
strated evidence on gene x gene interaction in affecting
the risk of developing RA. Visualization of these networks
displays interesting structures that could be used to gener-
ate testable biological hypotheses.

Competing interests
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Table 4: Logistic regression deviance table and likelihood ratio test results on data shown in Table 3

Model? df Deviance Residual df Residual deviance p-Value from LR test
Null model 1670 2316.23

SLC22A4 2 0.24 1668 2315.99 0.89

SUMO4 2 14.60 1666 2301.39 0.0007°

CARDI5 | 0.08 1665 2301.31 0.78

SLC22A4 x SUM0O4 4 10.40 1661 2290.92 0.03

SLC22A4 x CARD 15 | 0.32 1660 2290.60 0.57

SUMO4 x CARD 5 2 1.92 1658 2288.68 0.38

SLC22A4 x SUMO4 x CARD 15 2 17.13 1656 2271.54 0.0002

aSNPs analyzed: rs2073838 (SLC22A4), rs577001 (SUMO4), HugotSNP12ms3 (CARD15)

bBold indicates significant p-values.
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