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Abstract

Population stratification (PS) represents a major challenge in genome-wide association studies.
Using the Genetic Analysis Workshop 16 Problem 1 data, which include samples of rheumatoid
arthritis patients and healthy controls, we compared two methods that can be used to evaluate
population structure and correct PS in genome-wide association studies: the principal-component
analysis method and the multidimensional-scaling method. While both methods identified similar
population structures in this dataset, principal-component analysis performed slightly better than
the multidimensional-scaling method in correcting for PS in genome-wide association analysis of
this dataset.

Background
In the past few years, the genome-wide association
(GWA) approach has become a widely used tool for
identifying genetic loci related to disease risk. Population
stratification (PS) is a major challenge in GWA studies
(GWAS), because of the risk of generating false positives
that represent genetic differences from ancestry rather
than genes associated with a disease. Among the
methods developed for correcting PS in GWAS, the
principal-component analysis (PCA) method [1,2] and

the multidimensional-scaling (MDS) method [3,4] are
also capable of detecting population structure. The PCA
method identifies principal components that represent
the population structure based on genetic correlations
among individuals. The MDS method detects mean-
ingful underlying dimensions that explain observed
genetic distance, e.g., pairwise identity-by-state (IBS)
distance, among individuals. While other methods for
addressing population structure exist, we focused on
these two methods in this study.
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The objectives of this study were: 1) to compare the
population structures identified by PCA and MDS in the
rheumatoid arthritis (RA) dataset of Genetic Analysis
Workshop 16 (GAW16); and 2) to evaluate the
performance of these two approaches for correcting PS
in GWA analyses.

Methods
GAW16 Problem 1 data
GAW16 Problem 1 data, provided by the North
American Rheumatoid Arthritis Consortium (NARAC),
contained genome-wide data on 868 RA cases and 1,194
controls. Genotype data on 545,080 single-nucleotide
polymorphisms (SNPs) were available for analysis.

Genotype data quality control
Quality control of genotype data was conducted at both
the individual level and the SNP level. At the individual
level, a call rate of at least 0.95 was required. Sex
discrepancies were examined using the heterozygosity
rate of X-chromosome. At the SNP level, a call rate of at
least 0.90, a minor allele frequency of at least 0.01, and a
p-value from the Hardy-Weinberg equilibrium test of at
least 0.05/545,080 were required.

Principal-component analysis
PCA was performed using the computer program
EIGENSOFT 2.0 [1,2]. Theoretically, the leading compo-
nents should reflect population structure. In this case,
some of the leading components appeared to be
dominated by a small set of markers all mapped to a
few very small chromosome regions that showed
extended linkage disequilibrium (LD). To deal with
this problem, we applied a modified version of the PCA
as described by Fellay et al. [5]. A first round PCA was
conducted using all autosomal SNPs with minor allele
frequency >0.01. SNP loadings for the leading compo-
nents were compared with a normal distribution to
determine whether these components depended on
many SNPs across the genome or if they were dominated
by relatively few SNPs all mapped to a few small
chromosome regions with extended LD, as would be
expected when the given component reflected popula-
tion structure or a more localized LD effect, respectively.
To correct for the local effects, the PCA was re-applied in
a reduced SNP set. In this reduced SNP set, i) SNPs with
loadings that deviated from their expected normal
quantiles with a distance greater than one were excluded
along all leading components; ii) remaining SNPs were
pruned using the “indep-pairwise” option in PLINK 1.03
[3] such that all SNPs within a given window size of 100
had pairwise r2 < 0.2; iii) each SNP was regressed on the
previous two SNPs, and the residual entered into the
PCA. SNP loadings on all components deemed

significant by the Tracy-Widom statistic [6] were re-
inspected to make sure that no component was
dominated by a small LD region of the genome. In
case there were still leading components dominated by
local LD regions, the second round of PCA was repeated
with adjusted parameters until no component was
dominated by a small LD region. Population outliers
were excluded along all significant components.

Multidimensional scaling
MDS analysis was performed using PLINK1.03 [3]. All
SNPs that passed quality control were pruned such that
all SNPs within a given window size of 100 had pairwise
r2 < 0.2. Pairwise IBS distance was calculated using all
autosomal SNPs that remained after pruning. Five
nearest neighbors were identified for each individual
based upon the pairwise IBS distance. IBS distance to
each of the five nearest neighbors was then transformed
into a Z score. Individuals with a minimum Z score
among the five nearest neighbors less than -4 were
excluded from analysis as population outliers. MDS
dimensions were extracted using the “MDS-plot” option.

Genome-wide association analyses
Three GWA analyses were performed using PLINK 1.03
[3]. These three GWA analyses were Cochran-Armitage
trend test without any adjustment for PS, logistic
regression with the final set of significant principal
components as covariates, and logistic regression with
leading MDS dimensions as covariates. The genomic
inflation factor [7] was calculated for each GWA analysis.

Results and discussion
Genotype data quality control
All individuals had call rates >0.95 at the individual
level. An examination of sex led to the exclusion of seven
individuals due to incorrect or ambiguous sex informa-
tion when compared with phenotype data. At the SNP
level, 5,449 SNPs with call rates <0.90, 23,205 SNPs with
minor allele frequencies <0.01, 1,389 SNPs with p-values
from Hardy-Weinberg equilibrium test <0.05/545,080,
and 10 SNPs on Y-chromosome were excluded from
analysis. After genotype data quality control, there were
2,055 subjects and 515,741 SNPs in the analysis dataset.

PCA, MDS, and population structure
In the first round of PCA, 59 components met the criteria
for statistical significance using the Tracy-wisdom statis-
tic. Nearly half of the SNPs that deviated from their
expected normal quantiles with a distance of at least 1
(4,413 of 9,980) were in the HLA region (chr6:
25,000,000-33,500,000 bp), a region that had been
reported with higher genetic heterogeneity across differ-
ent populations. After removing SNPs that deviated from
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their expected normal quantiles with a distance of at
least one and pruning the SNPs based on LD informa-
tion, 81,636 autosomal SNPs were included in the
second round of PCA. This analysis resulted in eight
significant components using the Tracy-Widom statistic.
A small number of individuals (n = 9) were excluded as
outliers with scores on one of the significant principal
components more than six standard deviations beyond
the sample mean score.

In the MDS analysis, 81,652 autosomal SNPs were used
to calculate the pairwise IBS distance after SNP pruning.
A small number of individuals (n = 7) were excluded as
outliers with a minimum Z score among five nearest
neighbors less than -4. Among the seven outliers, five
were also among the nine outliers excluded by PCA. The
first eight dimensions were retained for correcting the PS
in GWA analysis.

The Pearson correlation coefficients between each of the
eight significant principal components and each of
the eight leading MDS dimensions are summarized in
Table 1. The first four principal components were
strongly correlated with the first four MDS dimensions,
respectively. The correlations started to drop from the
fifth principal components and the fifth MDS dimen-
sions. To illustrate the population structures identified
by the two methods, the first six principal components
(dimensions) were plotted against one another with RA
status distinguished by shading in Figure 1. Obvious
population structures were observed in the plots of the
first four principal components (dimensions), but not in
the plots of the fifth and sixth principal components
(dimensions). In addition, the population structure
identified by the first four principal components and
the structure identified by the first four MDS dimensions
were very similar. These results suggested that both PCA
and MDS were able to detect the major population
structure in this dataset with the first four principal
components or the first four MDS dimensions. The
population structures detected by the remaining

significant principal components or leading MDS
dimensions were subtle. The two methods could detect
different aspects of the subtle population structure in
this dataset.

GWAS results
The quantile-quantile (Q-Q) plots of the p-values from
the three GWA analyses, as well as the corresponding
genomic inflation factors of the three analyses, are
presented in Figure 2. SNPs in the HLA region are
excluded from the plots to enhance readability. Both the
genomic inflation factor (l) and the Q-Q plot of the
analysis using trend test indicated a strong PS effect on
the association result. The genomic inflation was 1.447,
and the Q-Q plot deviated from the expected line from
the beginning. This PS effect was successfully corrected by
using logistic regression with the significant principal
components as covariates. The genomic inflation factor
fell to 1.037, and the p-values of majority of the SNPs fell
between or very close to their 95% “concentration bands”
(gray shaded area). Although the analysis adjusted for the
leading MDS dimensions was able to reduce the genomic
inflation factor to 1.045, the Q-Q plot of this analysis still
showed an obvious deviation from the expected line,
indicating an uncorrected PS effect.

Results from the three GWA analyses were also plotted
against their chromosome locations (Figure 3). All three
analyses were able to identify the HLA region on
chromosome 6, which had been implicated by numer-
ous RA studies [8-11]. The total number of SNPs that
reached genome-wide significance (p-value < 0.05/
515,741) was 381 for the analysis using the trend test,
221 for the analysis adjusted for the significant principal
components, and 194 for the analysis adjusted for the
leading MDS dimensions. The majority of these sig-
nificant SNPs were from the HLA region. SNP rs2476601
in the PTPN22 gene is a non-HLA SNP that had been
associated with risk of RA [12]. Table 2 summarizes the
p-values of this SNP from the three analyses as well as
their corresponding rankings in non-HLA SNPs. After PS

Table 1: Correlation between first eight principal components and first eight MDS dimensions

Top eight principal components Top eight MDS dimensions

dim1 dim2 dim3 dim4 dim5 dim6 dim7 dim8

evec1 0.998a 0.01 -0.02 0.01 0.005 0.01 -0.002 -0.0004
evec2 0.00 0.98 0.17 0.03 -0.01 -0.01 0.01 0.002
evec3 -0.04 0.17 -0.96 -0.11 -0.01 0.01 0.01 -0.01
evec4 -0.02 0.00 -0.12 0.89 0.06 0.17 -0.07 -0.03
evec5 0.02 -0.01 -0.05 0.38 -0.20 -0.43 0.20 0.03
evec6 0.01 0.01 0.02 0.02 0.13 0.00 0.08 -0.17
evec7 -0.02 -0.001 -0.03 -0.01 0.17 -0.07 -0.17 0.31
evec8 0.02 -0.01 0.02 0.02 -0.26 -0.18 -0.32 0.06

aBold font indicates the absolute value of correlation coefficient > 0.8.
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Figure 1
Population structures identified by PCA and MDS. A, The first six principal components are plotted against one another
with RA status distinguished by shading; B, the first six MDS dimensions are plotted against one another with RA status
distinguished by shading.

Figure 2
Q-Q plots of p-values from three GWA analyses. SNPs in HLA region are excluded to enhance readability.
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correction using either significant principal components
or leading MDS dimensions, the p-value of this SNP
became less significant and the ranking dropped,
suggesting that PS may have also contributed to the
previously reported association signals at this SNP.

Although PCA performed slightly better than MDS in
correcting PS in the GWA analysis of this dataset, it
would be inappropriate to conclude that PCA is a
preferred approach in all GWAS. MDS is a more flexible
method in general as compared with PCA. First, PCA
requires that underlying data follow a multivariate
normal distribution, while MDS imposes no such
restriction. Second, PCA requires computation of a
covariance matrix first, while MDS can be applied to
any kind of distances or similarities. Pairwise IBS
distance is only one example of many distance measures
to which MDS can be applied. As a special case, MDS can
be applied to the covariance matrix used in PCA as well.

In this case, the performance of MDS in correcting PS
will be equivalent to it of PCA [4].

Conclusion
In this paper, we compared the performance of PCA and
MDS in identifying population structure and correcting
for PS in GWAS using data provided to GAW16
participants by the NARAC. While the two methods
identified similar population structures in this dataset,
PCA performed slightly better than MDS in correcting for
PS in the GWA analyses of this data set.
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