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Abstract

We propose a nonparametric Bayes-based clustering algorithm to detect associations with rare and common
single-nucleotide polymorphisms (SNPs) for quantitative traits. Unlike current methods, our approach identifies
associations with rare genetic variants at the variant level, not the gene level. In this method, we use a Dirichlet
process prior for the distribution of SNP-specific regression coefficients, conduct hierarchical clustering with a
distance measure derived from posterior pairwise probabilities of two SNPs having the same regression coefficient,
and explore data-driven approaches to select the number of clusters. SNPs falling inside the largest cluster have
relatively low or close to zero estimates of regression coefficients and are considered not associated with the trait.
SNPs falling outside the largest cluster have relatively high estimates of regression coefficients and are considered
potential risk variants. Using the data from the Genetic Analysis Workshop 17, we successfully detected associations
with both rare and common SNPs for a quantitative trait. We conclude that our method provides a novel and
broadly applicable strategy for obtaining association results with a reasonably low proportion of false discovery and
that it can be routinely used in resequencing studies.

Background
The two highly debated hypotheses on the genetic basis
of complex human diseases are the common disease/
common variant (CDCV) hypothesis and the common
disease/rare variant (CDRV) hypothesis [1]. The CDCV
hypothesis states that common diseases are caused by
common variants (minor allele frequencies [MAF] > 5%)
with small to modest effects. The CDRV hypothesis, on
the other hand, argues that common diseases are caused
by multiple rare variants (MAF < 5%), each with moder-
ate to high penetrance. Although both common and rare
variants likely play a role in complex human diseases,
most statistical strategies for association analysis have
been developed under the CDCV assumption, except
recent work by Li and Leal [2] and Han and Pan [3]. A
key strategy for association analysis with rare variants is

to study the cumulative effect of multiple rare variants
within the same gene or linkage disequilibrium block
[2,4,5]. However, these methods identify genetic risk
factors at the gene level, not the variant level. We pro-
pose a nonparametric Bayes-based approach to detect
associations with both rare and common genetic variants
for quantitative traits. This approach clusters single-
nucleotide polymorphisms (SNPs) according to the mag-
nitude of SNP-specific regression coefficients. SNPs clus-
tered together could come from different linkage
disequilibrium blocks, genes, or even different chromo-
somes and could have quite different MAFs.

Methods
Suppose that for each individual i (i = 1, 2, …, n) we
observe yi, a quantitative trait; zi, a p-dimensional vector
of individual-specific covariates, such as age and sex; and
xi = (xi1, xi2, …, xiJ) , genotypes at J SNPs. Here, we
assume an additive genetic model; thus xij = 0, 1, or 2,
representing the number of minor alleles present at SNP
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j of individual i. A regression model on the quantitative
trait is given by:
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for i = 1, 2, …, n, where g is a vector of regression
coefficients, including the intercept and slopes for indi-
vidual-specific covariates, the bj are the SNP-specific
regression coefficients, and εi is the error term. We spe-
cify the following prior distributions for the model para-
meters: g ~ ( , , )N vp+1

20 1 , bj ~ G, G ~ DP(a, G0), and
s ~ U(a, b). Here, v2 and b >a ≥ 0 are prespecified
hyperparameters, Np+1( , )mm Σ is a (p + 1)-dimensional
normal distribution with mean vector μ and variance-
covariance matrix Σ, 0 is a vector of zeros, I is an iden-
tity matrix, G denotes a random distribution, U(a, b)
denotes a uniform distribution between a and b, and DP
(a, G0) is the Dirichlet process.

Dirichlet process
The Dirichlet process [6] is a probability model on a
space of probability distributions. It has two parameters:
the base probability distribution G0 and the precision
parameter a (>0). If G ~ DP(a, G0), then G0 is the prior
expectation of G and a controls the variance of G.
Here, we take G N0 0 0

2= + ( , )m s , which is a normal
density truncated below at 0, and use U(c, d), d >c > 0,
as the prior distribution for the precision parameter a.
Sethuraman [7] provided a stick-breaking construction

of the Dirichlet process, which states that if we have:
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is a random probability distribution generated from
DP(a, G0), where δjk

denotes a point mass at jk. It is
clear that G is discrete with probability 1. Because of
the discreteness, the bj can take on the same value. That

is why the Dirichlet process can be used for clustering
analysis.
Ishwaran and James [8] studied a truncated version of

the Dirichlet process by choosing a truncation level N
and setting VN = 1 in the stick-breaking construction.
They used the truncated Dirichlet process to approxi-
mate Dirichlet process prior distributions and developed
a block Gibbs sampling method for Dirichlet process
models.

Clustering
Each iteration of the Gibbs sampler gives a clustering
structure of SNP-specific regression coefficients such
that coefficients taking the same value are clustered
together. The number of clusters and the cluster mem-
bership of the coefficients vary across iterations, giving a
random sample of clustering structures. Pairwise prob-
abilities of two coefficients being equal are calculated
from the posterior samples [9]. A distance measure is
derived as 1 minus these pairwise probabilities and is
then used in complete linkage hierarchical clustering to
obtain a final clustering structure of the SNPs. We study
a range of the number of clusters, from as small as 2–5
clusters to as large as 100 clusters. Optimal cluster num-
bers are also obtained by striking a balance between sen-
sitivity and specificity. In all cases, SNPs in the largest
cluster have relatively low or close to zero estimates of
regression coefficients and are considered not associated
with the trait. SNPs falling outside the largest cluster
have relatively high estimates of regression coefficients
and are considered potential risk variants. The propor-
tion of false discovery (FDP), defined as the ratio of the
number of false discoveries to the total number of discov-
eries, is examined.

Application of the method
We illustrate our methods using the data from Genetic
Analysis Workshop 17. The analyses were performed
with the knowledge of the underlying simulation model
[10]. We studied the first 10 replicates of the quantita-
tive trait Q1. Each replicate contains 697 unrelated indi-
viduals from 7 populations. To control for population
stratification, we conducted principal components analy-
sis on nonsynonymous common SNPs (n = 1,379) and
included the resulting first two components as covari-
ates, in addition to Age and Smoke. We built our model
with 244 nonsynonymous SNPs selected from the vascu-
lar endothelial growth factor (VEGF) pathway [11].
These SNPs include all 39 functional SNPs for Q1, of
which 23 are private variants (found in one individual,
MAF = 0.000717) and 2 are common SNPs. The model
was fitted using WinBUGS [12] with v2 = 1,000, a = 0,
b = 100, c = 0.5, d = 20, µ0 = 0.5, and s 0

2 2= . The
truncation level for the Dirichlet process was fixed at
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50. For each replicate, 10,000 Markov chain Monte
Carlo posterior samples were generated after a burn-in
period of 2,000 iterations.
We evaluated our results using two thresholds. When

the number of clusters was small (2–5), we defined true
positives as true associations identified in at least 2 of
the 10 replicates. This threshold was selected to balance
the reduced power resulting from small cluster num-
bers. Indeed, requiring at least two replications for each
identified association yielded a reasonably low FDP.
When we used the optimal cluster numbers, we defined
true positives as true associations detected in no less
than eight replicates. We carried out sensitivity analyses

on the prior specification for the SNP-specific regression
coefficients with µ0 ranging from 0.1 to 0.5 and s 0

2 ran-
ging from 0.5 to 2. Similar results were obtained.

Results and discussion
Successful identification of associations
Table 1 lists the true discoveries with their MAFs,
regression coefficients (b) used in the simulation, and
frequency of detection. When we used two clusters, we
found eight true positives with no false positives. Com-
pared with false negatives, the true positives have
either relatively high MAFs or relatively high effect
sizes. With 3 clusters, we had 11 true positives and no
false positives. With 4 or 5 clusters, we detected 12
and 13 associations, respectively. However, there was
one false positive (data not shown) in both cases (FDP
≈ 8%). We also conducted single-SNP-based tests with
Bonferroni correction for multiple comparisons. With
the criteria that p ≤ 0.05/244 in at least 2 of the 10
replicates, 20 associations were detected and 10 of
them were true discoveries, giving an FDP of 50%.
Compared with single-SNP tests, our method gave a
much lower FDP.

Selection of optimal number of clusters
As the number of clusters increases, more associations
may be detected; however, the number of false positives
may also increase. To strike a balance between sensitivity
and specificity, we examined receiver operating charac-
teristic (ROC) curves (Figure 1) for each replicate. The
optimal cluster numbers ranged from 59 to 96, with an

Table 1 True discoveries in at least two replicates with 2
to 5 clusters

Gene SNP MAF b F2 F3 F4 F5

FLT1 C13S523 0.066714 0.64997 10 10 10 10

FLT1 C13S431 0.017217 0.74136 9 9 9 9

FLT1 C13S522 0.027977 0.61830 8 8 8 8

VEGFA C6S2981 0.002152 1.20645 6 6 6 7

ARNT C1S6533 0.011478 0.5619 5 6 7 7

FLT1 C13S524 0.004304 0.62223 4 4 5 5

KDR C4S1884 0.020803 0.29558 4 4 4 5

KDR C4S1878 0.164993 0.13573 2 4 4 4

KDR C4S1877 0.000717 1.07706 1 4 5 6

KDR C4S1889 0.000717 0.94133 1 2 3 5

ARNT C1S6542 0.002152 0.46026 1 2 2 2

KDR C4S1861 0.002152 0.56311 1 1 1 2

F2, F3, F4, F5: frequency of detection (in bold when ≥ 2) over the 10
replicates with 2 to 5 clusters.

Figure 1 ROC curves and optimal cluster numbers. r1–r10 represent the first 10 replicates of the quantitative trait Q1. Numbers in parentheses
and dots on the curves indicate optimal number of clusters for each replicate, which ranges from 59 to 96, with an average of 81.
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average of 81. At the optimal cluster number for each
replicate, the average sensitivity and specificity were 0.71
and 0.72, respectively. We then examined the associa-
tions detected in these rounds. We had 100% power
(detected in all 10 replicates) to detect 10 true associa-
tions (Table 2) with 2 false positives (FDP = 17%). Using
a threshold of 90% power, five additional true associa-
tions were detected and are in the F = 9 rows in Table 2,
with no additional false positives (FDP = 12%). Using a
threshold of 80% power, we detected another four true
associations (19 total); however, the number of false posi-
tives went up to four (FDP = 17%).

We then evaluated the performance of this method
using a specified number of clusters, ranging from 50 to
100. Using only associations identified with 100% power,
we had 8 to 10 true positives and at most 2 false nega-
tives (FDP ranging from 10% to 18%). For 90% power, we
had 8 to 16 true positives and at most 4 false negatives
(FDP ranging from 8% to 20%). Thus cluster numbers of
50 to 100 seem reasonable.

Characteristics of the true positives and false negatives
Using optimal cluster numbers and the threshold of true
positives, we identified 12 of the 23 true associations with

Table 2 True discoveries in at least eight replicates with optimal cluster numbers

Gene SNP MAF b

F = 10, TP = 10, FP = 2, FDP = 17%

ARNT C1S6561 0.000717 0.65721

KDR C4S1877 0.000717 1.07706

KDR C4S1879 0.000717 0.61830

KDR C4S1889 0.000717 0.94133

VEGFC C4S4935 0.000717 1.35726

VEGFA C6S2981 0.002152 1.20645

FLT1 C13S431 0.017217 0.74136

FLT1 C13S522 0.027977 0.61830

FLT1 C13S523 0.066714 0.64997

FLT1 C13S524 0.004304 0.62223

F = 9, TP = 15, FP = 2, FDP = 12%

ELAVL4 C1S3181 0.000717 0.76911

ELAVL4 C1S3182 0.000717 0.30432

ARNT C1S6533 0.011478 0.56190

FLT1 C13S399 0.000717 0.39602

FLT1 C13S479 0.000717 0.75946

F = 8, TP = 19, FP = 4, FDP = 17%

KDR C4S1873 0.000717 0.58301

KDR C4S1884 0.020803 0.29558

FLT4 C5S5156 0.000717 0.43010

FLT1 C13S505 0.000717 0.44850

The items in the bolded rows are the frequency of detection over the 10 replicates (F), the number of true positives (TP), the number of false positives (FP), and
the proportion of false discovery (FDP) in each case.

Figure 2 Boxplot of b and MAF by false-negative or true-positive status. (a) b of private functional SNPs (MAF = 0.000717) for Q1; (b) MAF
and (c) b of rare but nonprivate functional SNPs (0.000717 < MAF < 0.05) for Q1. FN, false negative; TP, true positive.
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private SNPs. As we expected, true positives had overall
higher effect sizes than false negatives (Figure 2a).
Among the 14 true associations with rare but nonprivate
variants, true positives had relatively high MAFs and b
compared with false negatives, as shown in Figures 2b
and 2c.

Conclusions
We have demonstrated that a novel nonparametric Bayes-
based clustering method can be used to identify associa-
tions with SNPs for quantitative traits. Importantly, this
method is capable of detecting associations with both rare
and common genetic variants. Compared with other
methods that deal with rare variants, our methods detect
genetic risk factors directly at the SNP level. Compared
with single-SNP-based methods, the proposed method is
more powerful and reliable. It can detect a relatively larger
proportion of true associations independent of the MAF
of the variants, and it produces a relatively lower propor-
tion of false discoveries.
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