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Abstract

Genome-wide association studies often emphasize single-nucleotide polymorphisms with the smallest p-values
with less attention given to single-nucleotide polymorphisms not ranked near the top. We suggest that gene
pathways contain valuable information that can enable identification of additional associations. We used gene set
information to identify disease-related pathways using three methods: gene set enrichment analysis (GSEA),
empirical enrichment p-values, and Ingenuity pathway analysis (IPA). Association tests were performed for common
single-nucleotide polymorphisms and aggregated rare variants with traits Q1 and Q4. These pathway methods
were evaluated by type I error, power, and the ranking of the VEGF pathway, the gene set used in the simulation
model. GSEA and IPA had high power for detecting the VEGF pathway for trait Q1 (91.2% and 93%, respectively).
These two methods were conservative with deflated type I errors (0.0083 and 0.0072, respectively). The VEGF
pathway ranked 1 or 2 in 123 of 200 replicates using IPA and ranked among the top 5 in 114 of 200 replicates for
GSEA. The empirical enrichment method had lower power and higher type I error. Thus pathway analysis
approaches may be useful in identifying biological pathways that influence disease outcomes.

Background
Genome-wide association studies (GWAS) have had
successes in identifying novel genes related to diseases.
In these studies the focus is often placed on the most
significant single-nucleotide polymorphisms (SNPs) that
pass a stringent genome-wide significance threshold.
Furthermore, the variability explained by genome-wide
significant SNPs is often substantially less than the pro-
portion of heritability estimated for the disease [1]. With
a stringent threshold, variants that confer small disease
risks are more likely to be missed among the hundreds
of thousands of SNPs that are tested. Hence additional
methods that exploit genetic information beyond single
SNP association testing of common variants are needed.
Rather than focusing on individual SNPs or genes, we
consider gene sets that may improve power to identify
disease-related candidate genes or pathways. The gene
set enrichment analysis (GSEA) developed by Subrama-
nian et al. [2] was one of the first approaches developed
to identify gene sets that are associated with phenotypes

of interest based on gene expression data. In another
study, Mootha et al. [3] examined expression levels of
22,000 genes in a microarray study of diabetes and
found that no gene showed a statistically significant
expression difference after adjustment for multiple test-
ing. However, by using a pathway-based approach,
Mootha and colleagues were able to identify a set of
PGC-1a responsive genes that showed a modest but
consistent change in expression levels in muscle samples
from subjects with diabetes [3]. Wang et al. [4] later
demonstrated that pathway-based approaches, which
jointly consider many contributing factors in the same
pathway, might complement GWAS. Using results from
GWAS, these investigators have used their approaches
to test the association of pathways to determine whether
a set of genes from a biological pathway is associated
with a disease trait of interest, although the variants
individually may not necessarily meet the genome-wide
association threshold. These approaches have been use-
ful and have provided plausible biological insights into
underlying disease mechanisms.
In the present study, our main focus was to test the

hypothesis that using gene set information in pathway
analysis approaches will improve identification of
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disease-related genes or pathways. We implemented
three pathway approaches: gene set enrichment analysis
(GSEA), assessment of empirical enrichment of gene
sets, and Ingenuity pathway analysis (IPA) (using the
IPA software from Ingenuity Systems) [5]. The GSEA
ranks genes by their most significant SNP and looks for
gene sets with genes at the top of the ranked list. The
empirical enrichment method seeks to find gene sets
with larger than expected proportions of genes with
association p-values less than 0.01. The IPA software
identifies a set of focus genes, defined as genes contain-
ing SNPs that meet a user-specified level of nominal sig-
nificance. The overall goal of our analysis is to compare
these three approaches on the basis of their ability to
identify pathways significantly associated with the out-
come while maintaining a low type I error rate.

Methods
The data analyzed in this study were from a mini-exome
scan that used real sequence data for 3,205 genes
donated by the 1000 Genomes Project; the data were
made available by Genetic Analysis Workshop 17
(GAW17) [6]. A total of 24,487 SNPs were mapped to
the exon-sequenced data spanning all autosomes in 697
unrelated individuals. Most of the SNPs were rare var-
iants with more than half of the SNPs in the sample
having a minor allele frequency (MAF) below 1% and
with only a tenth having a MAF above 5%.
We analyzed two continuous traits, Q1 and Q4. These

traits were simulated as normally distributed pheno-
types. The simulating model for Q1 includes variants
from nine genes in the VEGF pathway; hence the VEGF
pathway is considered the truly associated pathway. The
generating model for Q4 does not include any of the
genotyped exonic SNPs. Consequently, any statistically
significant associations with Q4 are considered false
positives.

Association analysis
Single-SNP linear association tests of common SNPs
(MAF at least 1%) were performed assuming an additive
model for SNP effects. Covariates included in the linear
regression models were Age, Smoking, and Sex.
Although Age and Sex were fixed, the smoking status
covariate varied across the 200 replicates. To incorpo-
rate rare variants, the count of rare alleles (MAF < 1%)
observed within a gene was computed for each gene and
was used as an independent variable within a regression
model [7,8]. We refer to this genetic variable as the
aggregate rare variant. We used PLINK (http://pngu.
mgh.harvard.edu/purcell/plink) [9] and R software (R
Development Core Team; http://www.R-project.org) [10]
to perform linear regressions for common and rare

SNPs, respectively. The association tests were performed
on all replicates of the simulated phenotype data.
Seven ethnic groups are represented in the sample.

These ethnic groups are Centre d’Etude du Polymor-
phisme Humain (CEPH) (European-descent residents of
Utah) (90), Denver Chinese (107), Han Chinese (109),
Japanese (105), Luhya (108), Tuscans (66), and Yoruba
(112) [6]. Population stratification (or structure) among
these ethnic groups can cause spurious association.
Thus we decided to adjust for population structure.
Initially, we created dummy variables for each ethnicity
and fitted them as covariates to the model. Examination
of the QQ plots showed inflated genomic control value
(l > 2.0) for Q1 but not for Q4 when adjusting for eth-
nic group. We then implemented a principal compo-
nents (PC) analysis, a popular method in GWAS for
identifying and adjusting for subtle population structure;
we used the PCs instead of the ethnicity dummy vari-
ables. Principal components were obtained for common
SNPs. PC1, PC2, PC3, PC4, and PC9 were significantly
associated (p < 0.05) with Q1. PC1, PC4, and PC6 were
significantly associated with Q4. We reexamined the
QQ plots after adjustment for the PCs significantly asso-
ciated with each outcome. The genomic control value
was substantially reduced for Q1, and hence we
included significant PCs in the regression models.
The success of pathway analysis depends on the asso-

ciation tests of individual SNPs provided as input. A
common approach for these methods is to perform the
genome-wide association analysis, represent a given
gene by one or more SNPs, feed the output results into
the pathway-based methods, and later identify significant
pathways. In the current study, we assigned each gene
the p-value of the most significant genetic variable
within that gene from association analysis, where the
genetic variable was either a single common SNP or the
aggregate rare variants from that gene.

Pathway analysis
We implemented two gene set analyses: (1) the GSEA
algorithm described by Wang et al. [4] and (2) a test
of empirical enrichment similar to that described by
Chasman [11]. For these two approaches, we used the
curated gene sets from the Molecular Signature Data-
base (MSigDB, version 2.5) [12]. These gene sets were
drawn from online pathway databases, publications in
PubMed, and the knowledge of domain experts. In
total, 601 gene sets with between 10 and 409 genes
were available for these analyses, with genes belonging
to one or more gene sets. A third approach was the
canonical pathway analysis available in IPA. All three
methods were applied to each of the 200 replicate
data sets.
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Gene set enrichment analysis
The GSEA is a nonparametric procedure that ranks all
the genes by their p-value, which is obtained from the
association analysis, as described earlier. Each gene is
assigned a test statistic value ri obtained directly from
its p-value. The genes are ranked from highest to lowest:
r1, r2, …, rN. We compute an enrichment score for each
gene set S:
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A total number of N genes are represented by all the
SNPs. Each gene set S is composed of NH genes. The
result of the algorithm is an enrichment score (ES). The
ES(S) is a weighted Kolmogorov-Smirnov-like running
sum statistic. It describes the overrepresentation of the
NH genes at the top of the entire ranked list of genes. If
the genes in gene set S are associated with the outcome
and appear at the top of the ranked list of genes, the
enrichment score tends to be high. A high ES indicates
that the gene set has more genes with low p-values than
would be expected by chance alone.
We followed the procedure suggested by Wang et al.

[4] to compute a normalized enrichment score (NES) so
that the NES can be compared across gene sets and the
empirical p-values of the NES can be obtained. The
NES is calculated by permuting the affection status of
the sample 1,000 times, performing the association ana-
lysis with common SNPs and the aggregated rare var-
iants and recomputing the ES for each gene set. The
NES for a particular gene set is computed by normaliz-
ing the observed ES with the average and standard
deviation (SD) of the ESs across the permutations. The
permutations of the data sets are denoted by π:
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An empirical p-value can be obtained by comparing
the observed NES to the null distribution of NES values
from the permutations. Thus a gene set has a significant
NES and is significantly enriched with genetic variant
associations if the empirical p-value is less than the spe-
cified alpha level, which in this application was chosen
to be a conservative value of 0.01.

Empirical enrichment
The empirical enrichment analysis was used to deter-
mine whether gene sets had a higher proportion of
genes with association p-values less than a significance
level of 0.01 than would be expected by chance. A high
proportion of low p-values would indicate that a gene

set is enriched with genetic variant associations. Once
again, the p-value for the gene was taken from the mini-
mum association p-value from either the common SNPs
or the aggregate rare variants. The proportion of genes
with p-values less than 0.01 was recorded for each gene
set and compared to a null distribution of the same pro-
portion observed in the 1,000 permutations. A gene set
was considered significantly enriched if the empirical
p-value was less than 0.01.

Ingenuity pathway analysis
In addition to the two pathway analyses described
already, we implemented the IPA on the same set of
association results. A set of focus genes was identified in
IPA as those genes with an association p-value less than
0.01 (either a single SNP within the gene or the aggre-
gate rare variants of the gene). Canonical pathways ana-
lysis identified the pathways from the IPA library of
canonical pathways that were most significant given the
focus genes. The significance of the association between
the focus genes and the canonical pathway was mea-
sured in two ways: (1) as the ratio of the number of
molecules from the focus gene set that map to the path-
way to the total number of molecules that map to the
canonical pathway and (2) using Fisher’s exact test,
which was used to calculate a p-value to determine the
probability that the association between the focus genes
and the canonical pathway is explained by chance alone.

Type I error and power
All three methods of pathway analysis were evaluated
for power and type I error. A gene set was considered
statistically significant if the p-value obtained by the
analysis method was less than a predetermined alpha
level of 0.01. GSEA produces an empirical p-value of
the normalized enrichment score, the empirical enrich-
ment produces an empirical p-value of the number of
genes in the gene set with p-values less than 0.01, and
IPA produces a nonparametric p-value from Fisher’s
exact test.
To determine power, we tested the null hypothesis

that the VEGF pathway is not associated with the trait
versus the alternative hypothesis that the VEGF pathway
is associated with the trait in each replicate. Given that
the Q1 trait was simulated from nine genes in the
VEGF pathway, the VEGF pathway was considered the
truly associated pathway. The estimate of power is the
proportion of replicates in which the pathway methods
detect a significant enrichment of the VEGF pathway.
The Q4 trait was simulated independent of any of the

genetic variants distributed. Consequently, any signifi-
cant associations with Q4 can be considered false posi-
tives, and we used this trait to evaluate type I error. For
each replicate, the type I error is estimated by the
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proportion of gene sets in which the pathway methods
detect significant enrichment.

Results
Association analysis
The analysis of variance (ANOVA) for the quantitative
trait Q1, by ethnicity, showed no significant difference
in means among the seven ethnic groups for Q1 (F =
1.62, df = 6, p = 0.1387). There was a significant differ-
ence in means for Q4 by ethnicity (F = 11.39, df = 6,
and p < 0.0001). The genomic control value (l), which
is based on the genome-wide association of common
variants with no ethnicity adjustment, a dummy variable
adjustment for ethnicity, and a PC adjustment, was
computed using replicates 1 and 100 (Table 1). The
inflated l observed for Q1 was not totally mitigated by
adjusting for ethnicity using dummy variables. PC
adjustment substantially reduced l for Q1. Based on
these findings, for all subsequent analyses we chose to
adjust for the PCs associated with Q1 and Q4.
The association analysis of the Q1 trait with single

common SNPs and the rare variant aggregate for each
gene identified a minimum of 94 and a maximum of
271 genetic variants with p-value less than 0.01 among
all of the 200 replicates. The number of significantly
associated genetic variants identified for the Q4 trait
ranged between 43 and 229. SNPs C13S523 and
C13S522 were the most significant SNPs among all the
replicates, with median p-values of 2.4 × 10−13 and
1.215 × 10−9, respectively. These two SNPs were from
the FLT1 gene, one of the nine simulated genes for the
VEGF pathway. Across all 200 replicates only FLT1
yielded a genome-wide significant median p-value
among the genes in the VEGF pathway (Table 2). FLT1
was ranked as the top gene among all the replicates.
Within the VEGF pathway the next most strongly asso-
ciated SNP was KDR with a median ranking of 34 and a
median p-value of 0.0017.

Type I error and power
Type I error and power were computed to assess the
performance of the three methods (Table 3). For the
power calculations we focused on the VEGF pathway.
Both GSEA and IPA had high power for detecting the
VEGF pathway for the Q1 trait (91.2% and 93%, respec-
tively). The VEGF pathway was ranked 1 or 2 in 123
out of 200 replicates by IPA and 48 out of 200 replicates
by GSEA (see Figure 1). IPA performed the best to
detect the pathway under which the data set was simu-
lated. The empirical enrichment method had a lower
power (42.9%) compared to the other two methods. The
median type I error is reported in Table 3. GSEA and
IPA were more conservative, with lower type I error
compared to the empirical enrichment method. The
type I error for the empirical enrichment method was
close to the nominal level.

Discussion and conclusions
We used gene set information and pathway analysis
approaches to identify disease-related candidate genes or
pathways using three methods. Rather than focusing on
individual SNPs or genes, we considered pathways con-
taining genes sets that together may improve power to
identify disease-related candidate genes or pathways. We
assessed the performance of these three methods by
computing the power and type I error rate. Both the
GSEA and IPA approaches had high power and deflated
type I error rate. The GSEA and IPA pathway methods
identified the primary gene set under which the data set
was simulated (VEGF pathway) for the Q1 trait. IPA
performed the best to detect this pathway, which may
not be surprising given that the VEGF pathway as
defined within IPA was used in the simulation model.
The VEGF gene set used for the implementation of
GSEA in this study was not exactly the same as the
VEGF pathway under which the data were simulated,
yet this method still had high power to detect this

Table 1 Genomic control (l) based on association testing of all common variants (MAF ≥ 0.01)

Trait No ethnicity adjustment Ethnicity (dummy variables) Principal components

Replicate 1 Replicate 100 Replicate 1 Replicate 100 Replicate 1 Replicate 100

Q1 2.525 2.654 1.649 1.639 1.040 1.086

Q4 0.915 0.916 1.011 0.964 0.966 0.929

All models were adjusted for age, sex, and smoking with columns representing different ethnicity adjustments.

Table 2 Rank and nominal p-value from the association test between Q1 and the genes in the VEGF pathway included
in the simulating model for Q1

ARNT ELAVL4 FLT1 FLT4 HIF1A HIF3A KDR VEGFA VEGFC

Rank 112 1,007 1 1,013 698 544 34 985 214

p-value 0.009 0.1359 2.4 × 10−13 0.1441 0.0885 0.0616 0.0017 0.1380 0.0186

The smallest p-value from either single SNP association of common variants or aggregate of rare variants within a gene was chosen to represent the gene. All
models were adjusted for age, sex, smoking, and principal components.
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pathway. The empirical enrichment approach had a
lower power compared to the other methods.
We observed conservative type I error for the pathway

approaches implemented in the current study. However,
the number of significant findings will depend on the
number of genes being considered and the number of
pathways. For IPA the number of significant findings
will also depend on the number of focus genes. The
mini-exome data contained several thousand genes;
however, in full genome-wide data the number of genes
under consideration would be an order of magnitude
greater. In IPA a Benjamini-Hochberg multiple compari-
son adjustment can be applied and may be appropriate
when searching across all pathways using association
results from genome-wide data, but we did not apply
this adjustment in the current study. We consider the
GSEA and empirical enrichment methods to be hypoth-
esis-generating methods, useful for highlighting SNPs or
genes that may be of biological significance. We used an
alpha level of 0.01 rather than a Bonferroni-corrected

alpha level for the number of gene sets tested. The
empirical p-values do control for the correlation
between the gene sets, so such a correction would be
appropriate if the goal of the study was different.
Association analysis detected only a single gene in the

VEGF pathway at a genome-wide significance level.
Using a more liberal threshold, such as p < 0.01 results
in the identification of many genes (hundreds of genes
for some replicates) associated with Q1. Methods that
enable researchers to identify true associations among
these interesting but not genome-wide significant genes
are required. The current study shows the value of path-
way analysis; GSEA and IPA were able to correctly iden-
tify the VEGF pathway as important for the Q1 trait.
Identification of this pathway helps to narrow the focus
among the interesting hits to genes within the VEGF
pathway and provides biological insight into the Q1
trait.
The success of pathway approaches depends on the

association analysis results used as input. In the current
study we performed single SNP association testing of
common variants and of counts of rare variants within a
gene. We observed that association analysis of only
common SNPs missed several genes in the generating
model (results not shown). For the Q1 trait there were
causative genes that did not have any common SNPs
associated at the 0.01 level, indicating a potential

Table 3 Comparison of type I error and power
calculations among all three methods

Method Power Median type I error

GSEA 0.912 0.0083

Empirical enrichment 0.429 0.0133

IPA 0.930 0.0072

Figure 1 Histogram, across replicates, of the ranking of the VEGF pathway among all candidate pathways using Ingenuity pathway analysis and
gene set enrichment analysis.
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limitation of studying only common SNPs. Even when
we included the aggregate rare variants in the associa-
tion analysis, we did not detect all the genes associated
in the VEGF pathway at a genome-wide significance
level. Other methods of association analysis that use
common and rare variants may further improve the
power of pathway analysis by refining the input to these
methods.
One limitation of GSEA is that overrepresentation of

genes with nominally significant associations from
within a specific pathway may not be driven by true
association. If genes with high levels of linkage disequili-
brium between them are in the same gene set, then that
gene set may appear to be enriched, which in the case
of false-positive association will lead to inflated type I
error. Another shortcoming of GSEA is that if imple-
mented in-house, it requires manual updating by the
investigator to maintain current gene sets. Such manual
updating is not required when using the IPA software.
However, there is no cost associated with GSEA scripts
compared to the commercial IPA product.
The failure of SNPs identified as genome-significant in

GWAS to explain the heritability of the phenotype
underscores the importance of looking beyond the most
significant SNPs or genes and searching for additional
variants with moderate statistical significance. Our study
suggests that the IPA and GSEA methods can aid in the
detection of variants with moderate significance. In con-
clusion, using gene set information and pathway analysis
approaches may yield useful information in genetic asso-
ciation studies of human diseases.
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