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Abstract

Next-generation sequencing has opened up new avenues for the genetic study of complex traits. However,
because of the small number of observations for any given rare allele and high sequencing error, it is a challenge
to identify functional rare variants associated with the phenotype of interest. Recent research shows that grouping
variants by gene and incorporating computationally predicted functions of variants may provide higher statistical
power. On the other hand, many algorithms are available for predicting the damaging effects of nonsynonymous
variants. Here, we use the simulated mini-exome data of Genetic Analysis Workshop 17 to study and compare the
effects of incorporating the functional predictions of single-nucleotide polymorphisms using two popular
algorithms, SIFT and PolyPhen-2, into a gene-based association test. We also propose a simple mixture model that
can effectively combine test results based on different functional prediction algorithms.

Background
Despite the great success of genome-wide association
studies (GWAS) in identifying hundreds of loci harbor-
ing common single-nucleotide polymorphisms (SNPs)
that are associated with complex diseases, most com-
mon SNPs identified to date have small effect sizes and
the proportion of heritability explained is at best modest
for most traits. Thus investigators have become inter-
ested in low-frequency or rare variants (minor allele fre-
quency [MAF] < 1%) that may contribute to genetic risk
[1]. Recent advances in next-generation sequencing
technologies have made it possible, at a relatively low
cost, to extend association studies to low-frequency and
rare variants, particularly in targeted resequencing of
candidate genes or the whole exome.
The statistical power to detect disease association with

an individual rare variant is limited, partly because of the

small number of observations for any given variant and
partly because of the high frequency of sequencing errors.
In response to this challenge, several new and powerful
statistical methods have been proposed recently, includ-
ing the combined multivariate and collapsing (CMC)
method of Li and Leal [2], the weighted-sum method of
Madsen and Browning [3], and the variable threshold
(VT) approach of Price et al. [4]. Despite different statisti-
cal models, a common strategy adopted by these methods
is to group the variants according to function, such as
genes and pathways, and compare the group counts or
distributions rather than the counts for each variant in
the group. The rationale behind this grouping strategy is
that if many different mutations in a group affect disease
risk, then it may be beneficial to focus on the group
rather than on each variant individually.
The VT method of Price et al. [4] is of particular

interest because, in contrast to a prespecified threshold
for defining rare variants in the CMC method, it allows
the allele frequency threshold to vary and thus adapts to
properties of individual genes. It is motivated by the fact
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that some genes may harbor functional alleles at higher
frequencies, whereas other genes may have only private
functional variants. Another feature of the VT method
is that it can incorporate computational predictions of
the functional effects of nonsynonymous variants (e.g.,
by PolyPhen-2 [5]) into the association test, thereby
avoiding the loss of power that results from combining
both functional and nonfunctional alleles, as in previous
grouping methods. The VT method is more powerful
than the CMC and the weighted-sum methods for ana-
lyzing simulated and empirical sequencing data.
We note that Price et al. [4] used and studied only

functional predictions from PolyPhen-2. However, sev-
eral other algorithms are available for computationally
predicting functions of nonsynonymous variants, such as
the “sorting tolerant from intolerant” (SIFT) algorithm
of Kumar et al. [6], MutationTaster of Schwarz et al. [7],
and the “screening for nonacceptable polymorphisms”
(SNAP) algorithm of Bromberg et al. [8]. It is yet
unclear how the results of different functional predic-
tion-algorithm-based VT tests compare with each other.
The objective here is to use the Genetic Analysis Work-
shop 17 (GAW17) simulated mini-exome data to com-
pare the results of the VT test incorporating predicted
functions of nonsynonymous variants from two popular
algorithms, PolyPhen-2 and SIFT. Although previous
investigators have compared the accuracy of the two
algorithms in predicting deleterious mutations (e.g., Fla-
nagan et al. [9] and Adzhubei et al. [5]), we are the first,
to our knowledge, to study the effects of incorporating
functional predictions based on different computational
algorithms in the context of association tests of sequen-
cing data. In addition, we propose a simple mixture
model to combine the test results based on different
functional prediction algorithms.

Methods
Data description
We analyze the simulated mini-exome data set provided
by GAW17. This data set consists of a collection of 697
unrelated individuals and their genotypes and pheno-
types. The subjects are from the 1000 Genomes Project
(http://www.1000genomes.org). There are 24,487 SNPs,
among which 13,572 are nonsynonymous, mapped to
the exons of 3,205 genes. Two hundred replicates of the
phenotype simulation were carried out based on some
simulating model, and three quantitative traits and a
qualitative trait were available. See Blangero et al. [10]
for simulation details. In this study, we analyze only the
qualitative trait, that is, disease status, from replicate 1.
There were 209 case subjects and 488 control subjects.
Because we focus on a gene-based association test, we
restrict our analysis only to genes with at least two

SNPs, resulting in 1,979 genes and 23,261 SNPs, among
which 13,086 are nonsynonymous. The summary statis-
tics of the number of SNPs that each of the 1,979 genes
has are as follows: minimum = 2, 25th percentile = 3,
median = 6, 75th percentile = 15, and maximum = 231.

SIFT and PolyPhen-2 algorithms
The SIFT algorithm is a multistep, sequence-homology-
based algorithm that classifies amino acid substitutions
resulting from nonsynonymous SNPs. The underlying
premise for the SIFT algorithm is based on the evolu-
tionary conservation of the amino acids within protein
families: Highly conserved positions tend to be intoler-
ant to substitutions, whereas those with a low degree of
conservation tolerate most substitutions [6]. The SIFT
algorithm predicts that a nonsynonymous variant will be
damaging if the scaled probability score, also termed the
SIFT score, is less than 0.05; otherwise, the algorithm
predicts that the variant will be tolerated.
In contrast to the SIFT algorithm, which does not use

the protein structure information, the PolyPhen-2 algo-
rithm uses a naïve Bayes classifier to predict damaging
effects of nonsynonymous variants based on eight
sequence-based and three structure-based predictive fea-
tures [5]. The PolyPhen-2 algorithm calculates the naïve
Bayes posterior probability that a given mutation will be
damaging and qualitatively predicts that it will be
benign, possibly damaging, or probably damaging, corre-
sponding to posterior probability intervals [0, 0.2], (0.2,
0.85), and [0.85, 1], respectively.
We obtained the predicted functional scores of all

13,572 nonsynonymous SNPs by means of the online
versions of the SIFT algorithm (http://sift.jcvi.org/index.
html) and the PolyPhen-2 algorithm (http://genetics.
bwh.harvard.edu/pph2/). For both algorithms, we used
human genome build 36 from the National Center for
Biotechnology Information (NCBI) as the reference gen-
ome sequence. For the PolyPhen-2 algorithm, HumDiv
was selected as the classifier model because it was
recommended for evaluating rare alleles at loci poten-
tially involved in complex phenotypes [5].

Variable threshold test
In the VT test, rare alleles are grouped together by opti-
mizing an allele frequency threshold that maximizes the
difference, as quantified by a z-score, between distribu-
tions of trait values or disease status for individuals with
and without rare alleles. To control type I error, we
applied the same optimization procedure to permuted
data to obtain an exact p-value for association. The
rationale underlying the VT method is that for each
gene there is some unknown threshold T for which var-
iants with a MAF less than T are substantially more
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likely to be functional than those with a MAF greater
than T. Specifically, for a given gene with m SNPs in its
exons, we define the z-score for a given threshold T as:
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Where x i
T

is an indicator variable that is equal to 1 if
the MAF of SNP i is less than the threshold T and
equal to 0 otherwise, Cij is the reference allele count of
SNP i in subject j, πj is the phenotype of subject j equal
to 0 and 1 for control subjects and case subjects, respec-
tively, p is the mean value of πj across subjects j, and Si
is the functional prediction score of SNP i, which is
between 0 and 1 (larger values indicate higher probabil-
ity of damaging effect). In addition, the maximum z-
score is defined as:

z z T
T

max max ( ).= (2)

The statistical significance of zmax is then assessed by
permutations on phenotypes. In addition, the VT test
has been implemented as an R function, available at
http://genetics.bwh.harvard.edu/rare_variants/.

Incorporating the predicted functions of variants
into the VT test
To study and compare the effects of incorporating differ-
ent predicted functions of SNPs into a gene-based associa-
tion test, we carried out four versions of the VT test: (1)
an unweighted VT test, in which all SNPs, both synon-
ymous and nonsynonymous, were grouped (thus Si in Eq.
(1) was 1 for all SNPs); (2) a binary weight VT test, in
which only nonsynonymous SNPs were grouped (thus Si
was 1 for nonsynonymous SNPs and 0 otherwise); (3) a
SIFT-based VT test, in which Si was equal to (1 − SIFT
prediction score) for nonsynonymous SNPs and 0 other-
wise; and (4) a PolyPhen-2-based VT test, in which Si was
equal to the PolyPhen-2 score for nonsynonymous SNPs
and 0 otherwise. For those nonsynonymous SNPs without
a prediction score, we imputed them with the correspond-
ing median scores: 0.1 for the SIFT algorithm and 0.2 for
the PolyPhen-2 algorithm. For each gene, 10,000 permuta-
tions were carried out to obtain the p-value.

Mixture model for combining test results
Here, we propose a simple mixture model to combine
p-values resulted from association tests based on different

functional prediction algorithms. Let pg1 and pg2 be gene
g’s VT test p-values corresponding to the SIFT and Poly-
Phen-2 algorithms, respectively, for g = 1, …, G. Define
the z-transformation:

x pgk gk= −−Φ 1 1( ) (3)

so that smaller p-values correspond to larger z-values,
where F−1 is the inverse cumulative distribution func-
tion of N(1, 0) and k = 1, 2. We assume that (xg1, xg2)
follows a two-component bivariate normal mixture
model, that is, that its density is given by:

f x x f x x f x xg g g g g g( , ) ( , ) ( ) ( , ),1 2 0 0 1 2 0 1 1 21= + −p p (4)

where f0 and f1 are two bivariate normal densities cor-
responding to z-values of non-phenotype-associated and
phenotype-associated genes, respectively. The two-com-
ponent normal mixture model is a simple yet powerful
statistical method for genome-wide discoveries [11]. The
posterior probability of gene g being associated with the
phenotype is given by:
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which can be used to rank genes and to estimate the
false discovery rate (FDR) for a given cutoff for claiming
significant genes and thus to control the FDR at a
desired level, for example, 5% [12]. For simplicity, we
further assume that xg1 and xg2 are conditionally inde-
pendent given whether gene g is associated with the
phenotype or not; that is,

f x x x xl g g g l l g l l( , ) ; , ; , ,1 2 1 1 1
2

2 2 2
2= ( ) ⋅ ( )f m s f m s (6)

where j(x; μ, s2) is the density function of N(μ, s2)
and l = 0, 1. The conditional independence mixture
model is similar to a naïve Bayes method except that
the mixture model is unsupervised learning, whereas
the Bayes method is supervised learning. Note that this
simplified model may not provide goodness-of-fit to
the z-values, and thus the resulting posterior probabil-
ities can only be used to rank genes, not to estimate
the FDR (see Wei and Pan [13]). The parameter esti-
mates in the normal mixture model can be obtained
by means of the EM algorithm, which is implemented
in the R package mclust. In addition, p-values from a
single type of association test, for example, the SIFT-
based VT test, can be used to fit a two-component
univariate normal mixture model and the FDR can be
similarly estimated.
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Results
Prediction score comparison: SIFT vs. PolyPhen-2
algorithms
As described in the Methods section, we obtained the
prediction scores of being deleterious using the SIFT and
PolyPhen-2 algorithms for the 13,572 SNPs annotated as
nonsynonymous in the annotation file supplied by
GAW17. Nine hundred thirty-nine nonsynonymous SNPs
did not have a SIFT score and 1,241 nonsynonymous
SNPs did not have a PolyPhen-2 score, probably because
of gene annotation errors or insufficient sequence evi-
dence. Note that nonsynonymous variants with a Poly-
Phen-2 score larger than 0.2 were predicted to be
possibly or probably damaging, whereas those with a
SIFT score less than 0.05 were predicted to be damaging.
As a result, we plotted the (1 − SIFT score) against the
PolyPhen-2 score in Figure 1a. The scatterplot together
with the LOESS curve shows that the two scores are
positively correlated, although there are quite a few SNPs
with discordant prediction scores. We also assessed the
correlation of dichotomous predictions from the two
algorithms. Using 0.2 and 0.95 as thresholds for the

PolyPhen-2 and SIFT scores, respectively, we obtained a
two-by-two table with cell counts as follows: P+ and S+
= 3,600, P− and S− = 4,492, P+ and S − = 2,403, and P−
and S+ = 1,345. This resulted in an odds ratio (OR) esti-
mate equal to 5 (chi-square test p < 10−16), meaning that
the odds of being predicted to be deleterious using the
PolyPhen-2 algorithm for variants that were predicted to
be deleterious using the SIFT algorithm were five times
the odds for those that were predicted to be benign using
the SIFT algorithm. Similar comparison results held for
the 13,086 nonsynonymous SNPs corresponding to the
1,979 genes with at least two SNPs.

Comparison of SIFT-based and PolyPhen-2-based VT tests
Figures 1b-d compare the p-values and z-values of SIFT-
based and PolyPhen-2-based VT tests. Although the two
p-values are positively correlated overall, they can be
substantially different from each other. However, smaller
p-values seem to be better correlated, as demonstrated
by the upper-right part of the z-value plot Figure 1d. In
addition, we fitted a two-component bivariate normal
mixture model to combine the p-values of the two tests,

Figure 1 SIFT scores versus PolyPhen-2 scores. (a) (1 − SIFT score) plotted against PolyPhen-2 score. The red dashed lines correspond to the
thresholds for predicting deleterious variants: 0.95 for SIFT and 0.2 for PolyPhen-2. The blue solid line corresponds to the LOESS curve (locally
weighted scatterplot smoothing). (b) SIFT-based VT test p-values plotted against PolyPhen-2-based VT test p-values. Red plus signs correspond to
genes that had tied rank 1 (posterior probabilities of association equal to 1) by the mixture model combining both tests. (c) Enlarged section of
part b. (d) SIFT-based VT test z-values plotted against PolyPhen-2-based VT test z-values. Red plus signs correspond to genes that had tied rank 1
by the mixture model combining both tests. (e) Raw versus recalibrated PolyPhen-2 scores; solid line is the identical line. (f) Raw versus
recalibrated PolyPhen-2 score-based VT test p-values.
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as described in the Methods section. One hundred sixty
genes were ranked 1 (i.e., the posterior probabilities of
association were all equal to 1) in the combined analysis
and were plotted as red plus signs in Figures 1b-d. Not
only were genes with small p-values highly ranked, but
genes with moderately small p-values could also be
boosted to have a tied rank of 1 (Figure 1c).
In addition to the comparison between SIFT-based

and PolyPhen-2-based tests, we also performed compari-
sons among all four versions of the VT test. Specifically,
we looked at the overlaps among the top 100 genes by
each test, as shown by the Venn diagrams in Figure 2.
We can see that the SIFT-based and the binary weight-
based tests share a large number of genes, whereas the
PolyPhen-2-based and the unweighted tests share much
fewer genes with the former two tests. This comparison
also suggests, however, that association tests incorporat-
ing different functional predictions could lead to quite
different results. In practice, it is unlikely that one func-
tional prediction algorithm will be dominantly better
than the other, which necessitates a combined analysis
in an effective way, such as the mixture model proposed
here. In addition, Table 1 lists the top 10 genes by the
SIFT-based VT test, all of which were tied at rank 1 by
the combined analysis. All genes had small p-values, as
ascertained by the other three tests, as well as a large

number of SNPs sufficiently representing the corre-
sponding genes.

Comparison of raw and recalibrated PolyPhen-2 scores
Price et al. [4] suggested that, to obtain optimal results,
the PolyPhen-2 scores should be recalibrated before
being applied to the VT test. We obtained the recali-
brated PolyPhen-2 scores using the computer program
provided by Price et al. [4]. Figure 1e shows the raw ver-
sus the recalibrated PolyPhen-2 scores, which were cal-
culated using a nonlinear monotone transformation of
the raw scores. In addition, the VT test p-values based
on the raw and recalibrated PolyPhen-2 scores are com-
pared in Figure 1f. Although the p-values are highly cor-
related with Spearman’s rank correlation coefficient
equal to 0.98, they could be quite different for some
genes.

Discussion
In the present analyses, we compared the raw and recali-
brated PolyPhen-2 scores in the VT test. It would also be
of interest to develop methods for recalibrating the SIFT
scores; however, this would necessitate having available
credible neutral and damaging nonsynonymous SNPs as
a training set to derive the recalibration transformation.
Another possible direction for future investigation is to

Figure 2 Venn diagrams for the top 100 genes. Top 100 genes found by (a) PolyPhen-2, SIFT, and binary-weight-based VT tests and (b)
unweighted, SIFT, and binary-weight-based VT tests.

Wei et al. BMC Proceedings 2011, 5(Suppl 9):S20
http://www.biomedcentral.com/1753-6561/5/S9/S20

Page 5 of 6



develop association tests that are more robust to misspe-
cifications of functional predictions and can incorporate
covariate effects including environmental factors.

Conclusions
Motivated by the fact that many algorithms for predicting
damaging effects of nonsynonymous variants are avail-
able, we performed a comparative study of the effects of
incorporating different functional predictions into asso-
ciation tests using the GAW17 simulated mini-exome
data set. Our study reveals that, although the PolyPhen-2
and SIFT prediction scores are positively correlated over-
all, they can be substantially different from each other,
quantitatively as well as qualitatively. As a result, the
SIFT-based and the PolyPhen-2-based VT test results can
also differ. Importantly, our analyses suggest that the
two-component normal mixture model proposed here
provides a probabilistic approach to effectively combining
the heterogeneous test results. Further refinements,
including relaxing the conditional independence assump-
tion to improve the goodness-of-fit, are needed.
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Table 1 Top ten genes ranked by SIFT-based VT test p-value

Gene SIFT PolyPhen-2 Binary Unweighted Number of SNPs Number of nonsynonymous SNPs

FAM13A1 0.0002 0.0001 0.0007 0.0003 34 23

DGKZ 0.0002 0.0005 0.0002 0.0004 22 15

TRIM42 0.0003 0.0002 0.0009 0.0032 39 30

ADAM15 0.0003 0.0003 0.0016 0.0004 30 20

FLT1 0.0003 0.0007 0.0002 0.0002 35 20

GRIA4 0.0004 0.0003 0.0004 0.0066 18 6

IRF6 0.0005 0.0005 0.0021 0.0119 15 7

HDAC4 0.0007 0.0144 0.0011 0.0010 36 16

GDF15 0.0009 0.0006 0.0040 0.0006 10 6

SUSD2 0.0009 0.0008 0.0015 0.0005 45 29

All genes had tied rank 1 by the mixture model combining both SIFT-based and PolyPhen-2-based VT test p-values. P-values were obtained from 10,000
permutations.
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