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Abstract

Recent studies suggest that the traditional case-control study design does not have sufficient power to discover
rare risk variants. Two different methods—collapsing and family data—are suggested as alternatives for discovering
these rare variants. Compared with common variants, rare variants have unique characteristics. In this paper, we
assess the distribution of rare variants in family data. We notice that a large number of rare variants exist only in
one or two families and that the association result is largely shaped by those families. Therefore we explore the
possibility of integrating both the collapsing method and the family data method. This combinational approach
offers a potential power boost for certain causal genes, including VEGFA, VEGFC, SIRT1, SREBF1, PIK3R3, VLDLR, PLAT,
and FLT4, and thus deserves further investigation.

Background
Genome-wide association studies have accelerated the dis-
covery of genetic variants that cause disease. Thus far,
nearly 600 genome-wide association studies have exam-
ined about 150 distinct diseases or traits, and more than
800 single-nucleotide polymorphism (SNPs) associated
with these diseases or traits have been identified [1].
Recent studies have suggested that rare variants contribute
to common diseases, but the case-control study design
does not have sufficient power to discover rare causal
variants.
Two common approaches are used to increase the

power to detect rare variants. One method is to collapse
rare variants on the basis of predetermined criteria. By
grouping risk variants together, the frequency of rare risk
variants can be increased in the data set. Extensive
research on collapsing has been done for population-
based data [2]. Another approach is to examine family
data. The potential advantage of family data is that a par-
ticular rare variant found in an affected individual is

more common in that individual’s family than in subjects
randomly sampled in the population.
Genetic Analysis Workshop 17 (GAW17) is a colla-

borative effort among researchers to improve our current
understanding of genetic architecture. It provides simu-
lated data based on real exon sequence data and thus
offers a unique and relatively realistic opportunity to
evaluate statistical genetic methods that are relevant to
current analytical problems. For this workshop, we
designed a study to (1) test both the collapsing method
and the family design in data sets generated with the
same biological model and (2) assess the power of com-
bining these two approaches (collapsing rare variants
within family data). This study will help guide researchers
to design and analyze future studies for the detection of
rare genetic variants.

Methods
Family-based association testing
To test genetic associations in family data, investigators
need to address the correlation among family members.
Several methods are available [3-5]. We accounted for cor-
related genotypes by using the modified quasi-likelihood
score test (MQLS) developed by Thornton and McPeek [4].
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This method is implemented in the computer program
MQLS.
MQLS is an improvement on the previous quasi-likeli-

hood score test, WQLS, developed by Bourgain et al. [6]. It
accounts for the correlations among related individuals by
using a defined kinship matrix and assigns optimal weights
depending on the pedigree information, thus providing an
efficient estimator of allele frequency under the null
hypotheses. Interested researchers should refer to Thorn-
ton and McPeek’s paper for more details [4].

Collapsing rare variants within family-based association
testing
A causal gene can be shared by more than one or two
families, although this gene can have different rare risk
variants in those families. Traditional family-based associa-
tion tests fail to combine signals from different rare var-
iants. To address this issue, we proposed to collapse these
rare variants. Many collapsing methods are available.
Some methods simply account for the presence or absence
of rare variants, whereas others assign an adjustable weight
to different types of rare variants, based on biological func-
tion or minor allele frequency, and then calculate a final
score for each gene [2]. Currently, there is no conclusive
evidence to argue for or against a particular collapsing
method. To generate data that can be analyzed by MQLS,
we created a gene indicator that collapses rare variants
within the same gene. Similar to SNPs, the gene indicator
is a dichotomous variable that indicates presence or
absence of any rare variant within the region of interest,
so it can be processed by the MQLS program. A gene indi-
cator variable G for the nth subject is defined as:

G
AB

n =
if any predefined rare variants exist in a particular  gene,

if no predefined rare variants exist in a particuAA llar gene.

⎧
⎨
⎩

(1)

Although genotype BB can be defined when both
alleles of a particular SNP are the rare alleles, the likeli-
hood of this situation is small, because we are dealing
with rare variants.
We have developed a SAS macro to implement our

method with the MQLS program. The SAS macro is
available to interested investigators.

Power analysis
A subset of genes that had sequence data available in
the 1000 Genomes Project was included in this GAW17
project. GAW17 simulated the phenotype based on a
predefined simulation model and generated 200 different
phenotype files under the same model. Thus the 200
replicate phenotype files provide a unique opportunity
to estimate power. We tested associations under differ-
ent conditions and calculated the power of different
approaches. Power is defined as the proportion of times
that a particular test reaches the significance threshold.

Results
Distribution of rare variants within family data
The GAW17 data set has 697 subjects (209 case subjects
and 488 control subjects) from 8 families. A total of
24,487 SNPs were simulated for 3,205 genes. Fully infor-
mative identical-by-descent (IBD) scores were also pro-
vided for each gene.
We defined a SNP as rare if its minor allele frequency

(MAF) in the population was less than 0.01. By this defini-
tion, in the GAW17 data there are 18,131 rare SNPs, 56.4%
of which do not exist in the family data. According to the
simulation model, 162 SNPs underlie the disease status.
Among them, 145 are rare SNPs. Unfortunately, more than
70% of these rare SNPs do not exist in the family data. In
addition, a large proportion (85%) of the remaining SNPs
exist in only one or two families (Figure 1).
Moreover, many existing rare variants are not passed on

in the family. Analysis of the family data shows that 30 of
the 42 rare variants that exist in founders are not passed
on to offspring. In fact, only 10 of the 42 rare SNPs (7% of
all the causative rare SNPs) have an allele frequency (fre-
quency in family data) greater than 0.01.

Family-based association test
Because 85% of the 36 rare SNPs found in families exist
in only one or two families, it is expected that only one
or two families can contribute to the final association
result. Among the 145 rare SNPs that underlie the dis-
ease status, most signals exist in only one or two families.
The distribution of signals is shown in Figure 2, and it
matches the distribution of rare SNPs within families
well.
In addition, combining families that have a particular

risk allele with families that do not have the particular
risk allele unintentionally diminishes the power. We
compared the association result from all families and
the association result from each family. Seventy-seven
percent of rare causal SNPs have more significant P-
values from one family than from all data analyzed
together.

Collapsing rare variants within family-based association
test
As we have shown, for a particular rare risk variant, only
one or two families contribute to the signal, but one gene
may have multiple risk variants, each of which may be
possessed by different families. Cystic fibrosis transmem-
brane conductance regulator (CFTR) is a good example.
Since CFTR was identified, more than 1,000 mutations
have been found for cystic fibrosis [7]. And similar to
CFTR, a causal gene may have multiple mutations, and
different families may have different risk mutations
within the same gene. Because these different mutations
can be designated by a risk gene indicator, we believe
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Figure 1 Distribution of rare causal SNPs within families. In the GAW17 data set, 145 of 162 casual SNPs are rare variants. Of these 145 rare
variants, 103 do not exist in the family data. Eighty-five percent of the existing rare variants exist in only one or two families. The number above
each bar indicates the exact number of rare SNPs in this category. It partly explains why many rare variants cannot be discovered using family data.

Figure 2 Distribution of association signals withinfamilies. Each category indicates the number of families that report an association signal
for each SNP. The number above each bar indicates the total number of rare causal SNPs in this category. The distribution of association signals
matches well to the distribution of rare SNPs within families. It shows that when all families are analyzed together, the final result is largely
shaped by only a few families.
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that collapsing those different mutations to a gene indica-
tor may provide an additional boost on power.
We tested collapsing within family data using the

method described in the Methods section. One particular
question we want to address here is whether there is any
benefit to collapsing within families compared to collap-
sing in population-based data, which has been extensively
researched.
We set our significance level to a loose level of P < 0.05

for power calculation and repeated our analysis in the 200
phenotype data sets. We collapsed all rare SNPs (MAF <
0.01) within genes. The SNP for GCKR has a MAF greater
than 0.01 and thus was excluded from analysis. Among 35
available genes, 17 reached the significance threshold. The
power for these genes is shown in Table 1. For compari-
son, we did similar analyses in the population data with
two dummy variables to adjust for ancestry. From the
table, we notice that family-based collapsing is more useful
for certain genes.
Among those genes for which the family-based collap-

sing has power, we set our significance threshold to the
stringent level of 0.05/3,205 = 1.56 × 10−5. The power for
VEGFC and VEGFA is 99% and 94.5%, respectively. Popu-
lation-based collapsing, however, has no power to detect
these two genes. Among the 200 phenotypes, the popula-
tion-based collapsing reported a median P-value of 0.98
for VEGFC and 0.54 for VEGFA.
Another issue we want to address is whether there is any

gain in power for collapsing within families compared to
the family approach without collapsing. We tested each
SNP using MQLS within family data. The result is shown
in Table 2. The comparison shows that collapsing may be
useful for some variants and may be detrimental for some
other variants. In fact, collapsing a causal variant with a
noncausal variant will diminish power. We found that
SIRT1 and VLDLR have a power drop, but for some other
genes, such as SREBF1, PIK3R3, PLAT, and FLT4, there
are considerable power gains. Further analysis shows that
among those genes that have power gains by the family-
based collapsing, many families that possess different risk
variants have contributed to the signal.

Discussion
Recent advances in genome-wide association studies have
identified hundreds of common SNPs that are associated
with different diseases, but collectively they can explain
only a small fraction of variation. Many investigators
believe that the missing heritability may be partly
explained by the rare variants, which are difficult to dis-
cover in the common case-control study design. One rea-
son that the existing study design does not have sufficient
power is simply because these rare variants are rare. In
general, for any statistical test, a certain number of sub-
jects who possess this particular rare variant are required

in order to obtain enough power. From this perspective,
the family design and the collapsing approach, both of
which are potential methods for discovering rare variants,
aim to increase the presence or the frequency of the risk
variant or haplotype in the data set. However, some chal-
lenges are associated with these two methods.
It is generally thought that because a rare mutation can

be transmitted to offspring, family data may have more
copies of rare mutations than can be found in population-
based data. However, a large number of rare mutations
that are possessed by founders are not passed on in the
family data. Among 145 rare SNPs, only 10 have an allele
frequency (frequency in family data) greater than 0.01.
This may partly explain the general conclusion reached in
the GAW17 meeting that family data are not particularly
helpful for discovering rare risk variants.
In addition, collapsing should be used with caution. The

assumption behind collapsing is that risk alleles tend to be
rare. This assumption may be supported by evolution the-
ory. If one new variant is generated by mutation and is
beneficial, then this new variant will be favored by selec-
tion and therefore its frequency will increase over time.
Similarly, malicious alleles are selected against, and there-
fore their frequency will decrease over time. Moreover, if a
nonsynonymous mutation occurs at a conservative gene
coding region, it is likely that the mutation will be mali-
cious, because that is why the sequence is otherwise con-
servative. However, some neutral rare variants can exist in
the population as a result of random mutation. Grouping
a risk variant with a neutral variant may decrease the
power, as we have shown in Table 1.
In GAW17, all risk variants are nonsynonymous SNPs.

In Table 1, the power is lower when collapsing all rare
variants than when collapsing only nonsynonymous
SNPs. It is tempting to argue that we should collapse
only nonsynonymous SNPs. In reality, however, synon-
ymous SNPs may play a significant role in biological
function, for example, alternative splice site, transcription
factor binding site, or even chromatin structure protein
binding site. Meanwhile, nonsynonymous SNPs may have
no function at all. At the protein level, an amino acid
change, which is usually the result of nonsynonymous
SNPs, often fails to change the secondary structure and
tertiary structure of a protein and therefore may have no
impact on protein function. Although it is generally diffi-
cult to predict whether a synonymous SNP or a nonsy-
nonymous SNP is biologically functional or not, we
believe that the use of prediction algorithms for function
will be helpful. Several function prediction algorithms are
available, for example, SIFT and PolyPhen-2 [8,9]. Unfor-
tunately, all causal variants in the GAW17 simulation
data were chosen based on PolyPhen and SIFT predic-
tions of the likelihood that the variant would be deleter-
ious. Thus the application of the function prediction
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Table 1 Comparison of collapsing within family data and collapsing within population-based data

Chromosome Gene Number of
synonymous SNPs

Number of
nonsynonymous SNPs

Total number of
SNPs

Number of risk
SNPs

Family Population

Power (All)
(%)a

Power
(nonsynonymous) (%)b

Power
(All)
(%)a

Power
(nonsynonymous)

(%)b

6 VEGFA 2 2 4 1 100 100 13 10

4 VEGFC 0 1 1 1 100 100 0 0

10 SIRT1 9 14 23 9 19 47 7 8

17 SREBF1 5 16 21 10 19 36 17 18

1 PIK3R3 3 2 5 1 11 1 2 2

9 VLDLR 8 15 23 8 10 4 10 9

8 PLAT 14 11 25 8 8 34 6 7

5 FLT4 3 5 8 2 6 13 15 15

4 KDR 5 9 14 8 0 0 45 35

18 PIK3C3 5 1 6 1 0 0 38 0

8 PTK2B 6 3 9 3 0 0 31 4

14 SOS2 1 6 7 2 0 0 22 25

13 FLT1 8 17 25 8 2 1 21 17

3 BCHE 3 25 26 13 0 1 19 19

11 PDGFD 0 6 6 4 6 6 19 19

14 HIF1A 2 5 7 3 0 0 17 17

8 PTK2 4 5 9 2 0 0 14 6

1 PIK3C2B 22 38 60 23 2 0 14 16

1 SHC1 3 3 6 1 0 0 13 5

6 VNN1 4 2 6 1 1 2 7 13

Power is calculated based on the threshold P < 0.05. Because of limited space, only those genes whose power is greater than 10% are shown.
a All rare SNPs were collapsed.
b Only nonsynonymous rare SNPs were collapsed.
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Table 2 Comparison of family data with collapsing and family data without collapsing

Chromosome Gene Number of synonymous
SNPs

Number of nonsynonymous
SNPs

Total number of
SNPs

Number of risk
SNPs

Collapsing Noncollapsing, power
(%)

Power (All)
(%)a

Power (nonsynonymous)
(%)b

6 VEGFA 2 2 4 1 100.0 100.0 100.0

4 VEGFC 0 1 1 1 100.0 100.0 100.0

10 SIRT1 9 14 23 9 19.0 47 99

9 VLDLR 8 15 23 8 10.0 3.50 58.50

17 SREBF1 5 16 21 10 18.5 36 22.50

1 PIK3R3 3 2 5 1 11.0 1 0

8 PLAT 14 11 25 8 8.0 34 0

5 FLT4 3 5 8 2 6.0 12.50 0

Power is calculated based on the threshold P < 0.05. Because of limited space, only those genes whose power is greater than 10% are shown.
a All rare SNPs were collapsed.
b Only nonsynonymous rare SNPs were collapsed.
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algorithm to the GAW17 simulation data, which were
generated using the same function prediction algorithm,
may not be illuminating.
One purpose of this study is to cast new light on future

study designs. We noticed that in family data, the associa-
tion signals exist in only one or two families. We also
noticed that combining these families with families that do
not possess these risk variants unintentionally diminishes
power. Therefore we argue that, given a limited sample
size, a large pedigree may be more useful for discovering
rare risk variants. Although many rare variants cannot be
discovered, a large pedigree is still useful because at least
some causal rare variants are more likely to be found.
In conjunction with association testing, linkage can

identify regions of interest. Therefore regional sequencing
can be done instead of whole genome sequencing. In addi-
tion, the selection of the most informative families or
family members may further reduce the total genotyping
cost. In addition, the use of extremes of a phenotypic dis-
tribution may provide tremendous information and reduce
the required sample size [10].
In this study, we tested collapsing within family data,

which combines the two widely proposed methods: the
family design and the collapsing approach. The new com-
binational method provides considerable power gain for
some genes. Although we noticed that the power gain is
obtained at the cost of power for some other genes, this
is still useful, especially if the alternative is that nothing
can be found. As we have shown in this paper, this
method can be useful for discovering novel variants asso-
ciated with disease, and thus it merits further study.

Conclusions
Family data are believed to be one way to increase the pre-
sence of rare variants in the data set. But a large number
of rare risk variants cannot be sampled in the family data.
Even for existing rare risk variants, a large proportion of
them are not passed on in the family. Many existing rare
risk variants are seen in only one or two families, and the
result from association is largely shaped by those families.
To aggregate signals from different rare variants in differ-
ent families, we integrated the collapsing method within
the family data method. To our knowledge, this is the first
attempt in the literature to do collapsing within family
data. This combinational approach offers a promising
power boost for certain causal genes and thus deserves
further investigation.
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