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Abstract

We compare the SNP-based and gene-based association studies using 697 unrelated individuals. The Benjamini-
Hochberg procedure was applied to control the false discovery rate for all the multiple comparisons. We use a
linear model for the single-nucleotide polymorphism (SNP) based association study. For the gene-based study, we
consider three methods. The first one is based on a linear model, the second is similarity based, and the third is a
new two-step procedure. The results of power using a subset of SNPs show that the SNP-based association test is
more powerful than the gene-based ones. However, in some situations, a gene-based study is able to detect the
associated variants that were neglected in a SNP-based study. Finally, we apply these methods to a replicate of the
quantitative trait Q1 and the binary trait D (D = 1, affected; D = 0, unaffected) for a genome-wide gene search.

Background
Our aims are (1) to compare single-nucleotide poly-
morphism (SNP) based and gene-based association stu-
dies and (2) to apply both methods to a genome-wide
search for associated genes. To check the effect of cov-
ariates, we use linear models for the numerical traits
Q1, Q2, and Q4 and a logistic model for the binary trait
D. We modify the original trait value by adjusting for
significant covariate effects. Then in the SNP-based
association study, we delete alias SNPs and use a linear
or logistic model to find the p-value for each SNP.
In the gene-based association study, we consider three

methods. The first two methods are two major types of
multilocus association study methods, and the third
method is a new method that we propose. Specifically,
the first method is based on multilinear regression [1].
The second method is similarity based and is useful for
binary traits only [2]. The p-values are calculated using
the cumulant-based estimation procedure [3]. These two
multilocus association study methods can have reduced

power as a result of increased degrees of freedom [4].
To solve this problem, we propose a two-step procedure
that first classifies and collapses multilocus genotypes
and then uses the classic T and Pearson chi-square sta-
tistics to perform an association test. To reduce compu-
tational time, the overall p-value is obtained using a
self-adjusted permutation procedure, as described by
Knuth [5].
From our analysis, we conclude that the detection of

association signals for rare variants is a challenging pro-
blem. The SNP-based association study is more power-
ful in general. However, the gene-based study can pick
up some association signals neglected by a SNP-based
study.

Methods
Data
We use the genotype data from 697 unrelated indivi-
duals in the Genetic Analysis Workshop 17 (GAW17)
data set. For the first aim (comparing SNP-based and
gene-based association studies), we consider all four
traits and use all 200 replicates. For computational con-
venience, we include only a subset of genes, which is
formed by the 9 true associated genes (39 SNPs) for
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trait Q1, the 13 true associated genes (72 SNPs) for trait
Q2, the additional 15 genes (51 SNPs) for the binary
trait D, and 50 other randomly selected nonassociated
genes (731 SNPs). The total number of genes is 86, and
they contain 893 SNPs. For the second aim (applying
both methods to a genome-wide search for associated
genes), we use the complete list of all the genes and
SNPs, which includes 3,205 genes (24,487 SNPs).
Because Q1 has the most significant association and the
binary trait D has the weakest association, we consider
only a fixed replicate data set for these two traits as
representation.

Effect of covariates
We considered the three covariates Sex, Age, and Smok-
ing before conducting association studies. We use linear
models for the quantitative traits Q1, Q2, and Q4 and a
logistic model for the binary trait D. We also check
assumptions in the models to make sure they are appro-
priate. For each trait and replicates, we first fit the cor-
responding models that include all three covariates to
test whether they are significant. Then we include only
the significant covariates in the model and calculate
residuals. These residuals are used as new trait values to
perform association studies.

SNP-based association study
Because there are numerous rare SNPs, it is likely that
SNPs at two different loci will be in complete linkage dise-
quilibrium. That is, R2 = D′ = 1. We call these alias SNPs;
they do not contribute additional information to an asso-
ciation study. Therefore, to increase power, we use only
one copy of the alias SNPs. The new data set generated
here is called the cleaned data. In the subset of SNPs for
our first aim (comparing SNP-based and gene-based asso-
ciation studies), the cleaned data include 83 genes and 773
SNPs. In the complete data set for our second aim (apply-
ing both methods in a genome-wide search for associated
genes), the cleaned data include 2,987 genes and 15,076
SNPs. Note that the cleaned data here are used to control
the false discovery rate (FDR) only.
We assume an additive genetic model. For each trait

and SNP in the cleaned data, we perform simple linear
(or logistic) regression. The p-value to test the null
hypothesis that the slope is 0 versus the alternative that
the slope is not 0 is recorded. To adjust for multiple
testing, we use the Benjamini-Hochberg (BH) procedure
to control FDR [6]. That is, let m be the number of
SNPs in the cleaned data, and let P(i) be the ith ordered
p-value. Then for a prespecified 0 <a < 1, define:
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as the BH threshold. When the tests are independent,
this procedure guarantees that FDR ≤ a.

Gene-based association study
In the gene-based association study, we consider all 86
genes and 893 SNPs. Likewise, we use the BH procedure
to control FDR. For each gene, the multilocus genotype
is defined as the composition of genotypes at all SNPs
included in the gene. If the gene contains L SNPs, then
in theory the total number of possible genotypes for the
gene is 3L. However, because of rare variants and link-
age disequilibrium in nearby SNPs, the actual observed
number of multilocus genotypes is much less.
The first gene-based association study method is

referred as GL, which is based on a linear (or logistic)
model. That is, traits are regressed on all the SNPs
included in the gene. The p-value to test the null
hypothesis that all coefficients are 0 versus the alterna-
tive that at least one coefficient is not 0 is recorded.
The second gene-based method is referred as GS,

which is similarity based and is used for the binary trait
D only. The test statistic Ds is defined as:

D p q A p qs

T
= −( ) −( )    , (2)

where p is a vector of the estimated frequencies of
multilocus genotypes in the affected group, q is a vec-
tor of those in the unaffected group, and A = (aij) is the
genotype similarity matrix [4]. Here the similarity score
aij between the ith and jth distinct genotypes is defined
to be 1 minus the weighted average of absolute differ-
ences between numbers of minor alleles at each SNP of
a gene. The weight is the inverse of the minor allele fre-
quency (MAF), which accounts for the assumption that
genomes that share minor alleles are more similar than
those that share common ones [7]. According to Tong
et al. [3], the distribution of Ds under the null hypoth-
esis can be approximated by a chi-square distribution or
the difference between two chi-square distributions.
The third gene-based method is referred as G2, which

has two steps. In the first step, we define a null multilo-
cus genotype to be the one with genotype g = 0 at all the
SNP loci, where g is the number of minor alleles. We
then compare each distinct multilocus genotype with the
null genotype and classify it into one of the following
three groups: (1) C = 0 (not distinguishable from the null
genotype); (2) C = −1 (negatively contributed to the
trait); and (3) C = 1 (positively contributed to the trait).
In the second step, we compare the means of the trait
values for the three groups. For each gene, we estimate
two p-values (one for the C = 1 group compared with the
C = 0 group and one for the C = −1 group compared
with the C = 0 group) using a permutation procedure.
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In a permutation, we first randomly assign an
observed trait value to each individual and then follow
the two-step procedure to find the mean differences for
comparison with the observed ones. To improve the
efficiency of computation, we use a self-adjusted proce-
dure to decide the number of permutations needed [5].
Specifically, we require that the standard deviation of
the estimated p-value, denoted p , be at most 10% of it.
That is, let R be the number of permutations, and let S
be the number of times that the mean difference in a
permutation is greater than or equal to the observed
mean difference. Then p S R = / . The permutation
stops when [ ( ) / ] ./p p R p  1 0 11 2− ≤ , which is equivalent
to S ≥ 100R/(100 + R). The minimum number of per-
mutations is set at 100.

Comparison of association studies
Because the number of hypotheses in a SNP-based study
is different from the number of hypotheses in a gene-
based study, we have to redefine the false positive rate
(FPR), the FDR, and the power for a SNP-based study to
make them comparable with the gene-based values. Spe-
cifically, consider all the SNPs in a gene. If at least one
minor allele contributes significantly to the trait at a
predefined significance level, then this gene is detected.
Then for each replicate data set, the list of significant
genes is determined. In this list of genes, some are true
associated variants and some are not. The observed FPR
is calculated as the number of reported false positives
divided by the total number of true null genotypes. The
observed FDR is the number of reported false positives
divided by the total number of reported positives. The
power (or alternatively, true discovery rate) is the num-
ber of reported true positives divided by the total num-
ber of true alternatives. For the gene-based studies, the
list of significant genes is determined directly given a
predefined significance level. Likewise, the observed
FPR, FDR, and power are calculated. The observed FDR
versus power receiver operating characteristic (ROC)
plot is presented to compare the overall performance of
these methods.

Results and discussion
Effect of covariates
We estimate the parameter values in linear models sepa-
rately for each of the 200 replicate data sets. The linear
or logistic model assumptions seem appropriate. The
effects of covariates are consistent in the 200 replicates.
For trait Q1, Age and Smoking are significant, which
explain 15% of the variation. The value of Q1 increases
with age and is higher in smokers. No covariates contri-
bute to trait Q2. For trait Q4, all three covariates are
significant and explain 80% of the variation. The value
of Q4 is smaller in females than it is in males, decreases

when age increases, and is smaller in smokers. For the
binary trait D, Age and Smoking are significant. The
probability of the event {D = 1} increases when age
increases and is higher in smokers.

Comparison of SNP-based and gene-based association
studies
We first check the effect of true associated SNPs using a
linear model. The results show that 35% of the variation
in Q1 can be explained by the 39 true associated SNPs
in 9 genes; 22% of the variation in Q2 can be explained
by the 72 true associated SNPs in 13 genes; there are no
true associated SNPs for Q4. The variation in D
explained by true associated genes cannot be calculated
because the original values of the liability used to deter-
mine D are unknown.
Table 1 lists the number of positive genes for each

method applied to each trait as well as the observed
FDR. From this table, we see that the observed FDRs
can be much larger than the values to be controlled. For
example, in Q1 when a = 0.25 and the method is SNP-
based, the observed FDR is 0.849, although in theory we
should have FDR <a if all genes are independent. There
are two possible reasons for this result. First, the total
number of tests is only 86, which is not large compared
to the number of associated genes. Second, these tests
are not independent. Although the BH procedure to
control FDR is not satisfied, we find that in the gene-
based studies the situation can be better than in the
SNP-based one. The reason may be that independence
between genes is easier to satisfy than independence
between SNPs. Several investigators have discussed

Table 1 Number of positive genes and estimated FDR

Trait Method a = 0.25 a = 0.5 a = 0.75

No. Pos FDR No. Pos FDR No. Pos FDR

Q1 SNP 35.185 0.849 51.625 0.874 65.875 0.884

GL 31.790 0.791 47.935 0.837 65.100 0.869

G2 26.785 0.777 39.730 0.823 47.255 0.841

Q2 SNP 3.975 0.281 11.060 0.486 29.905 0.655

GL 4.175 0.297 12.350 0.503 29.315 0.662

G2 4.370 0.351 13.755 0.545 27.760 0.684

Q4 SNP 0.325 – 1.215 – 3.210 –

GL 0.365 – 1.120 – 3.370 –

G2 0.415 – 1.325 – 2.900 –

D SNP 3.695 0.324 12.690 0.519 33.940 0.580

GL 5.225 0.261 17.355 0.374 37.050 0.476

GS 4.945 0.274 13.615 0.377 34.330 0.437

G2 5.575 0.284 19.160 0.416 33.880 0.467

SNP, GL, G2, and GS are the SNP-based, gene-based linear, gene-based two-
step, and gene-based similarity methods, respectively. a is the predefined
value in the BH procedure. “No. POS” is the average number of positives over
200 replicates; and the FDR is the observed false discovery rate.
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controlling the FDR in correlated tests [8-11], but we do
not discuss the issue here because of space limitations.
We made a power comparison for traits Q1, Q2, and

D. The results are similar. We show results only for
trait D in the following discussion for conciseness.
Figure 1 compares the power of the SNP- and gene-
based methods for the binary trait D. It is obvious that
the SNP-based method is most powerful on average for
an association test. The GL and G2 methods are similar
and are better than the GS method. However, no
method is superior in all the situations. Table 2 gives
the power comparison for each true associated gene.
We list only the genes with power greater than or equal
to 0.3 when the observed FPR is 0.1. From this table, we
see that the power to detect true associated genes for
trait D is generally low. For the genes for which an asso-
ciated SNP is not rare, such as FLT1 (SNP C13S523,
MAF = 0.067), the SNP-based method is preferred
because it is simpler and more powerful. However, some

genes, such as FLT4 and HIF1A, have multiple rare
alleles (MAF ≤ 0.012) that contribute to the trait; in this
case the gene-based methods can have more power than
the SNP-based method. Therefore we conclude that the
gene-based association might be able to pick up some
association signals that are neglected in a SNP-based
search.

Genome-wide search for associated genes
TableÂ 3 lists the results from the genome-wide asso-
ciation studies based on SNPs and genes for trait Q1 (9
associated genes out of 3,205). The control of FDR
using the BH procedure almost completely fails here.
For example, when we use a = 10−5, the observed FDRs
are 2/3, 1/3, and 3/4 for SNP, GL and G2 methods
respectively. Because it is extremely hard to find asso-
ciated genes here, we might instead lower our goal and
try to get a (fairly large) subset of genes containing asso-
ciated ones. For example, when a = 0.5, there are 6 (out
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Figure 1 ROC plot for trait D The x-axis is the average observed false positive rate over 200 replicates and 50 nonassociated genes. The y-axis
is the average observed true positive rate (or power) over 200 replicates and 36 truly associated genes. SNP, SNP-based method; GL, gene-based
linear method; GS, gene-based similarity method; G2, gene-based two-step method.
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of 1,272), 7 (out of 1,253), and 8 (out of 977) true asso-
ciated genes using the SNP-based, GL and G2 methods
respectively. It seems that in this data set the G2
method is the best, the GL method is the second best,
and the SNP-based method is the worst, because the G2
method reports fewer significant genes, which contain
more true associated ones instead.
The problems of weak power and a high FPR are

much more severe for the other traits when the genetic
variation is lower. For example, for the binary trait D,
we applied all four methods to data set 1. The results
from these methods are similar. For the GS method, in

the 100 most significant genes there are 3 true asso-
ciated ones, and in the 1,000 most significant genes
there are 14 true associated ones. Note that if we
equally likely select 1,000 from 3,205 genes (37 true
associations), the expected number of true associated
genes reported is 11.5, which is less but not very much
less than 14. This indicates that p-values here are not
very informative. Therefore it is almost impossible to
identify true associated genes in this situation.

Conclusions
The detection of an association signal for rare variants is
a challenging problem because of insufficient data. The
SNP-based association study is more powerful than
gene-based methods on average. However, when multi-
ple rare variants contribute to a trait, the gene-based
association study not only gives more reliable control
over FDR but also is possible to pick up association sig-
nals neglected by a SNP-based study.
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