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Abstract

Rare genetic variants have been shown to be important to the susceptibility of common human diseases. Methods
for detecting association of rare genetic variants are drawing much attention. In this report, we applied a gene-
based approach to the 200 simulated data sets of unrelated individuals. The test can detect the association of
some genes with multiple rare variants.

Background
Genome-wide association studies (GWAS) have been
promising for identifying the underlying genetic basis of
complex disorders. Indeed, many disease susceptibility
regions have been identified using this approach. However,
there is still “missing heritability” for most common dis-
eases [1]. Part of the reason is that the statistical tests used
in traditional GWAS may not have sufficient power to
detect the association of rare genetic variants because of
low allele counts in a sample. Rare genetic variants have
been shown to contribute to the risk in some common
disorders [2,3]. A possible approach is to combine the
information at multiple rare genetic variants and test the
association collectively in a gene or a pathway [4,5]. Dering
et al. [6] provides a review of the association methods that
combine information from multiple genetic markers.
Here, we apply a gene-based approach for testing associa-
tion of rare alleles [7] to the 200 simulated data sets of
unrelated individuals provided by Genetic Analysis Work-
shop 17. The empirical type I error rate and power are
reported.

Methods
Statistical test
We apply an association method to combine the informa-
tion of single-nucleotide polymorphisms (SNPs) in a

particular gene. The method can be applied to any
segment of the genome. Here, we use genes as natural seg-
ments of the genome. Instead of using the standard chi-
square test to compare the allele frequencies in case and
control subjects, we propose to compare the mutation
rates between the two groups. Specifically, we count the
number of minor alleles with a minor allele frequency
(MAF) less than 0.01 (which we refer to as mutations) in a
specific gene in each individual from the case and control
groups. Let Pi be the number of mutations in a gene in
individual i in the case group and Qj be the number of
mutations in the same gene in individual j in the control
group. Let P and Q be the average number of mutations
in the gene in the case and control groups, respectively,
and let M be the average number of mutations in the
gene in the total sample. Also, let SPQ

2 be the pooled sam-
ple variance of the number of mutations in the total sam-
ple, given by:
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where nP and nQ are the number of individuals in the
case and control groups, respectively, and N is the total
sample size. Then we define the test statistic:
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Under the null hypothesis of no association of the set
of SNPs in a gene with the disease, the average number
of mutations in the case and control groups should be
equal and the test statistic TG is asymptotically distribu-
ted as a central chi-square distribution with one degree
of freedom.

Results
Distribution of SNPs within gene
We identified all the SNPs within a specific gene by com-
paring the nucleotide position information against the
starting and ending positions of the gene. Gene AHNAK,
which has 231 SNPs, is the gene with the most SNPs.
Nonetheless, 1,191 genes have only one SNP. The mean
number of SNPs is 8.33 per gene with a variance of 227.6.

Type I error
The affection status provided in each phenotype replicate
file was used to put the samples into case and control
groups. We then applied the gene-based test to all the 200
replicates of the simulated data. As an example, Table 1
lists the genes that are significant at the 0.001 level from
the tests using the data from the first replicate.
From the simulation model, 36 genes are involved in

the simulation of the disease affection status, as explained
in the next subsection. Therefore the remaining 3,169
genes are not involved. The significant genes among
these 3,169 genes are counted as false positives. For each
replicate, we count the number of false positives and cal-
culate the ratio of the number over 3,169. We take the
ratio as an estimate of type I error rate. Figure 1 gives the
plots of the type I error rate in 200 replicates at the 0.01
and 0.001 levels. The mean and standard deviation of the
type I error rate are 0.00105 and 0.00837 at the 0.01 level
and 0.00102 and 0.00268 at the 0.001 level.

Power
Using the simulation model [8], we simulate the disease
status using a liability threshold model. The liability is a

function of Q1, Q2, Q4, and a latent liability, which are
influenced by 36 genes. For the test results of each repli-
cate, we count the number of significant genes that are
among the 36 genes, that is, real positives, and calculate
the ratio of the number over 36 as a rough estimate of
power for each replicate. Six of the 36 genes are signifi-
cant at the 0.001 level from replicate 1. This gives a
power estimate of 16.7%. Figure 2 gives the plot of the
power estimates in 200 replicates at the 0.01 and 0.001
levels. The power estimates vary quite a bit across repli-
cates. The mean and standard deviation of the power
estimates are 0.137 and 0.037 at the 0.01 level and 0.106
and 0.019 at the 0.001 level.
Because we have test results from 200 replicates, we

also count the number of times a particular gene is called
significant across the 200 replicates. Table 2 gives the list
of genes that are significant at least 30 times over the 200
replicates at the 0.001 level. At the top of the list is the
FLT1 gene, which is significant 171 times at the 0.01
level and 136 times at the 0.001 level, giving power esti-
mates of 85.5% and 68.0%, respectively. From the simula-
tion model, 11 of the 35 SNPs in this gene are
influencing Q1. Similarly, the tests at the PIK3C2B gene
are significant 139 times at the 0.01 level and 87 times at
the 0.001 level, giving power estimates of 69.5% and
43.5%, respectively. PIK3C2B has 71 SNPs, 24 of which
influence the disease liability.

Discussion
Association methods for rare genetic variants are attract-
ing much attention in the genome era, especially with the
advance of next-generation sequencing technology.
Because rare alleles appear in only a few individuals, the
traditional single-marker tests have low power. An alter-
native method is to group genetic variants by gene or
pathway and test the variants in one group collectively.
In this report, we applied a gene-based approach to the
data on unrelated individuals. The test is based on the
Poisson mutation process for rare genetic variants. Our

Table 1 Significant genes at the 10–4 level from replicate 1

Gene Chromosome Gene length (bp) Number of SNPs p-value

ADAM15 1 11,491 30 1.74 × 10–6

FLT1 13 192,877 35 2.23 × 10–6

RIPK3 14 4,016 21 8.15 × 10–6

LOC100130230 5 5,347 10 1.18 × 10–5

PIK3C2B 1 67,714 71 1.51 × 10–5

MAP3K12 12 18,992 17 2.73 × 10–5

UAP1 1 38,338 13 2.82 × 10–5

BCHE 3 64,562 29 3.26 × 10–5

SUSD2 22 7,631 45 4.93 × 10–5

OR10H4 19 951 20 6.50 × 10–5

CD79B 17 3,607 10 8.57 × 10–5
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results show that this test has modest power in detecting
the association of genes when all the underlying genes
are considered. The type I error rate seems to be well
controlled on average but is inflated in some replicates,
as shown in Figure 2. However, it should be noted that
the approach for estimating the type I error rate is not
rigorous in that in each replicate the estimate is based on
only 3,169 “null genes” assumed to be unrelated to the
disease status. There could be considerable Monte Carlo
error; the assumption that all of the 3,169 genes are unre-
lated to the disease status may not be true if there are
some unknown interactions between some genes used in
simulating the disease phenotype and some null genes. It
is encouraging to see that the test can detect the associa-
tion signal at FLT1 and PIK3C2B with relatively good

power. Nonetheless, the validity and power of the test
depend on the assumption of the distribution of the sus-
ceptibility mutations. Apparently, if a particular gene has
many susceptibility mutations, then, because all of them
are contributing to the disease risk, we would expect a
larger difference between the number of mutations in the
case and control groups, which could translate into
higher power than genes with fewer mutations.
The validity of using the simulated data sets also

depends on the simulation model and its compatibility
with the test assumptions. Because this is a group test of
all the SNPs within one gene, the model might not work
well for genes that have only one or two susceptibility
mutations, whereas it does work well for genes with
more susceptibility mutations, as in the cases of FLT1

Figure 1 Type I error rate in 200 simulation replicates.
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Figure 2 Empirical power in 200 simulation replicates.

Table 2 Number of significant tests across 200 replicates

Gene Number of significant tests Chromosome Gene length (bp) Number of SNPs

a = 0.01 a = 0.001

FLT1 171 136 13 192,877 35

PIK3C2B 139 87 1 67,714 71

HDAC4 126 79 2 352,780 17

NFKBIZ 132 66 3 33,010 26

SLC6A3 116 61 5 52,630 25

RNF145 126 52 5 50,416 18

BRWD2 51 42 10 58,342 2

SHC3 92 36 9 53,358 5

WNT16 71 36 7 51,384 20

TTLL4 81 33 2 9,654 50
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and PIK3C2B, which have 11 and 24 susceptibility SNPs,
respectively. The simulation model also assumes that all
the minor alleles in the model increase disease risk,
which may favor some of the collapsing methods.

Conclusions
The proposed gene-based association method can detect
the association of some genes with multiple rare variants.
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